(NASA-TM-X-73907) MASA OFFICE UF ACAGNAUTICAL AND SPACE TECHNOLOGY SUMBER WURKSHOP. VOLUME 7: Malekials PANEL Adpoint (MaSA) 170 p no Acoyma Act CSCL 116

N77-13916

Unclas

50957

NASA GRANT NSG 1186

National Aeronautics and Space Administration Office of Aeronautics and Space. Technology and Old Dominion University

Vol. VII of XI

NOTICE

The results of the OAST Space Technology Workshop which was held at Madison College, Harrisonburg, Virginia, August 3 - 15, 1975 are contained in the following reports:

EXECUTIVE SUMMARY

VOL I DATA PROCESSING AND TRANSFER

VOL II SENSING AND DATA ACQUISITION

VOL III NAVIGATION, GUIDANCE, AND CONTROL

VOL IV POWER

VOL V PROPULSION

VOL VI STRUCTURE AND DYNAMICS

VOL VII MATERIALS

VOL VIII THERMAL CONTROL

VOL IX ENTRY

VOL X BASIC RESEARCH

VOL XI LIFE SUPPORT

Copies of these reports may be obtained by contacting:

NASA - LANGLEY RESEARCH CENTER

ATTN: 418/CHARLES I. TYNAN, JR.

HAMPTON, VA. 23665

COMMERCIAL TELEPHONE: 804/827-3666

FEDERAL TELECOMMUNICATIONS SYSTEM: 928-3666

NASA

Office of Aeronautics and Space Technology Summer Workshop

August 3 through 16, 1975

Conducted at Madison College, Harrisonburg, Virginia

Final Report

MATERIALS PANEL

Volume VII of XI

OAST Space Technology Workshop MATERIALS TECHNOLOGY PANEL

Robert A. Signorelli CHAIRMAN LEWIS RESEARCH CENTER

MEMBERS:

J. J. GANGLER	OAST
W. D. KLOPP	LEWIS RESEARCH CENTER
R. LAD	LEWIS RESEARCH CENTER
W. B. LISAGOR	LANGLEY RESEARCH CENTER
E. C. McKANNON	OAST
H. G. NELSON	AMES RESEARCH CENTER
C. H. SAVAGE	JET PROPULSION LABORATORY
C. E. VEST.	GODDARD SPACE FLIGHT CENTER

COLLABORATOR:

STEPHEN G. CUPSCHALK ASSOCIATE PROFESSOR MECHANICAL ENGINEERING & MECHANICS OLD DOMINION UNIVERSITY The Materials area is defined by this workshop in that which is pertinent to mission and flight experiment requirements for Structures, Power, and Propulsion. Technology and flight experiment needs in other areas such as Thermal Control, Electronic, Entry Technology, and Life Support are included in those sections.

MISSION DRIVEN MATERIALS TECHNOLOGY

Most Materials Technology Requirements have been classified as mission-driven because, from a materials viewpoint, a mission detand can be defined in every case, even for those cases for which the applications technology does not recognize the benefits. It is obvious that a large majority of applications devolve into materials problems. An equivalent statement may be that an important function of the materials community is to define that the limits of performance of materials: these limitations are based, at any particular time, on the properties of the materials of interest and a knowledge of development potential both in properties and other factors such as cost and availability. Alternate materials and their potential improvements are also a factor.

The Materials Technology Requirements have been classified in two ways. First the separation has been according to materials class, namely, Metals, Ceramics, Polymers, and Composites. The polymer classification also includes organic compounds research and development in areas such as lubricants and organic superconductors. The second grouping, within each

of the above classifications, consists of Development, Characterization, Manufacturing, and Basic Research. The compilation of Technology Requirements in this section is in accord with the above classification. Each requirement is further identified with respect to applications to Structures, Power, and Propulsion as well as to other pertinent areas.

Development is defined, for the purpose of this report, as the improvement of known materials and the synthesis of new materials using known phenomena and techniques. Characterization is the accumulation of property and environmental data necessary to predict whether a developed, available material will fulfill a certain mission requirement and whether it can be used with confidence by designers. Manufacturing refers to the process techniques which are required to produce a material in a form which is useful in a mission.

Topics in the Basic Research area resulted from considerations of two kinds. One was the recognizable needs for basic understanding that stem from the developments and applications that are foreseen for particular materials, e.g., composites and catalysts. The second consideration was the recognizable needs for advancement of understanding in the various areas of solid state physics, physical chemistry and others that directly pertain to materials development and applications. Examples are diffusion in alloys and the physics and chemistry of surfaces.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

OPPORTUNITY DRIVEN MATERIALS TECHNOLOGY

Space processing of materials has been taken to be opportunity driven. It is designed to satisfy one of several requirements:

- 1.) To supply data unobtainable on the ground.
- 2.) To run demonstrations for design purposes.
- 3.) To manufacture materials under conditions unobtainable on the ground.
- 4.) To manufacture or process materials in space for space use (possibly in the future from new materials obtained in space).

The ability to operate effectively in the low gravity environment of near earth orbit has provided a unique opportunity to do new materials research. The low gravity aspect of the environment, in particular, has excited interest in a host of new materials possibilities such as: containerless solidification and handling (levitation) for materials whose development on earth have been limited by reaction with containers, dies, and molds; reduced convection in liquids leading to better control of the solidifying interface; and mixing of otherwise immiscible materials because of the elimination of density driven stratification. Research in the low gravity environment will lead to a better understanding of basic materials phenomena which are currently thought to limit earthbound prccessing. It will also lead to manufacturing in space where the economic trade-off with transportation and energy requirements permit.

CONTENT OF THE BODY OF THE MATERIALS WORKING GROUP PORTION OF THE REPORT

The space Materials Technology Requirements identified by the working group are attached. These have been divided into several categories. A narrative description was proposed on all items identified. A total of 52 items were included broken into Mission Driven (48 requirements) and Opportunity Driven (4 requirements). In addition, those items for which a flight experiment was proposed were included again. A total of 27 candidate flight experiments were proposed.

The need to index the topics was addressed as follows. A list of the titles of each narrative is attached. Further, a number has been assigned to each narrative and index and cross index have been prepared on the basis of a discipline matrix and of a discipline/application matrix.

Studies on materials processing in space have been going on for several years. This work has been supported by the Office of Applications in NASA, but much of the emphasis has been on capitalizing on current flight opportunities and rapid pay-off. These flight experiments have indicated that more extensive ground based preparations and several iterative flight and ground experiments are needed to understand the problems involved in order to achieve the expected results. At this juncture, OAST needs to become involved in planning and directing the longer range development program on a larger scale.

Materials processing in space is divided into three areas:

(a) development of commercially desired products needed in the industrial market (such as improved semi-conductors), (b) exploitation of the environment in performing basic research to improve the understanding of materials phenomena (such as solidification) which have a more distant pay-off, and (c) manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space. Area A will continue to be supported by the Office of Applications. Tasks in areas B and C are proposed in the following document.

LIST OF

SPACE MATERIALS TECHNOLOGY REQUIREMENTS

Mission Driven

- 1. Materials with High Thermal Conductivity and High Strength at High Temperatures for Rocket Motor Nozzles
- 2. Higher Temperature Superconducting Materials
- Lunar Extractive Metallurgy
- 4. Environmental Interactions Meteoroids and Radiation
- 5. Development and Characterization of Refractory Metals For Space Power Systems
- 6. Fracture Toughness/Strength Optimization of High Strength Structural Alloy Systems
- 7. Utilization of Magnesium, Beryllium, and Beryllium-Aluminum Alloys in Advanced Space Structures
- 8. Low Cycle Thermal Fatigue of Superalloys
- 9. Fatigue, Fracture and Life Prediction of Metallic Structures Exposed to Chemical Environments
- 10. NDT/NDE Earth and Space
- 11. Development of Elastic-Plastic Failure Criteria
- 12. Solar Cell Solder Connections with Extended Life During Thermal Cycling in Orbit
- 13. Joining Metals in Space
- 14. Basic Studies of Electromigration in Metals and Alloys
- 15. Theoretical Studies of Diffusion in Alloys
- 16. Basic Studies in Catalysis
- 17. Basic Studies of Mechanisms of Hydrogen Embrittlement
- 18. Basic Studies of New Concepts for Solar Cells
- 19. Solid State Diffusion Studies in Space

- 20. Experimental Studies of Diffusion in Alloys
- 21. Phase Diagram Studies in Space
- 22. Measurement of Vapor Pressure of Corrosive Materials
- 23. Basic Studies of Gas-Surface Reactions
- 24. High Temperature Insulations
- 25. Structural Ceramics

K

A Service of the service of

3

THE PROPERTY OF THE PARTY OF TH

- 26. Ceramic Fibers for Composites
- 27. Large Area Polymer Films for Space Applications
- 28. Adhesive Bonding of Large, Erectable Structures in Space
- 29. Long Life Polymeric Protective Coatings for Space Applications
- 30. Long Life Adhesives for Space Applications
- 31. High Temperature, High Thermal Conductivity Polymeric Materials
- 32. Improved Electrical Conductivity Polymeric Materials
- 33. Retention of Liquid Lubricants by Passive Means Under Passive Conditions
- 34. Retention of Liquid Lubricants "in Place' Under Dynamic Conditions
- 35. Effects of the Space Environment on the Properties of Specific Polymeric Materials
- 36. Space Repair of Polymers in Electronic Assemblies
- 37. Basic Studies of the Relation Between Molecular Structure and Mechanical Behavior of Polymers
- 38. Basic Studies of Polymer Matrix Composite Structure Behavior
- 39. Basic Studies in Electrochemistry
- 40. Physics and Chemistry of Organic Superconductors
- 41. Low Thermal Expansion Composite Materials for Space Structures
- 42. Standardization of Composite Materials Processing and Testing
- 43. Effect of Long Duration Space Exposure on Properties of Composite Materials
- 44. Characterization of Damage Mechanisms Associated with Failure and Degradation of Composite Materials
- 45. Manufacturing of Composite Materials in Space

- 46. Materials and Processes for Assembly of Structures in Space
- 47. Basic Solid State Physics of Metal Matrix Composites
- 48. Studies of Creep and Fracture Mechanisms in Composites

Sub Total 48

Opportunity Driven

- 49. Development of Directionally Solidified Eutectic Compounds in Space
- 50. Containerless Casting and Shaping of Reactive Metals in Space
- 51. Fabrication, Assembly, and Joining of Materials for Large Space Structures
- 52. Space Processing of Ceramics and Glass

Sub Total 4

LIST OF

CANDIDATE FLIGHT EXPERIMENTS

- 5a Refractory Metal Heat pipes
- 5b Refractory Metal Contamination
- 7 Light Metal Alloys Long Time, Low Earth Orbit Exposure on Mechanical Stability
- 9a Processing and Use of Chemically-Active Metals in Space and Planetary Environments
- 9b Solid-Solid Metal Embrittlement in the Space Environment
- 10 NDT/NDE Earth and Space
- 11 Influence of Long Term Space Exposure on Localized Plasticity in
 Metals
- 12 Solar Cell Solder Connections with Extended Life During Thermal Cycling in Orbit
- 13 Joining Metals in Space
- 19 Solid State Diffusion Studies
- 21 Phase Diagram Studies at Low Pressure and Zero g
- 22 High Temperature Vaporization Studies of Corrosive Molten Salts
- 28 Adhesive Bonding of Large Erectable
- 29 Long Life Polymeric Protective Coatings for Space Applications
- 30 Long Life Adhesives for Space Applications
- 31 High Temperature High Thermal Conductivity of Polymers for Space Application
- 32 Improved Electrical Conductivity of Polymers for Space Application
- 33 Rete tion of Liquid Lubricants by Passive Means in Space Environment Under Passive Conditions
- 34 Retention of Liquid Lubricants "in Place" Under Dynamic Conditions Using Barrier Films and Labyrinth Seals
- 35 Effects of the Space Environment on the Properties of Specific Polymers

- 36 Space Repair of Polymers in Electronic Assembles
- 43 Long Term Space Exposure of Composite Materials
- 44 Effects of Space Environment AL Effects on Fatigue and Fracture of Advanced Filamentary Composite Structural Materials
- 49 Development of Directionally Solidified Eutectic Compounds in Space
- 50 Containerless Casting and Shaping of Reactive Metals in Space
- 51 Fabrication, Assembly and Joining of Materials for Large-Space Structures
- 52 Space Processing of Ceramics and Glass

INDEX OF MATERIALS TECHNOLOGY

	MET	METALS	CERAMICS	MICS	POLY	POLYMERS	COMPC	COMPOSITES
	TECH REQ'S	FLIGHT EXP'MTS	TECH REQ'S	FLIGHT EXP'MTS	TECH REQ'S	FLIGHT EXP'MTS	TECH REQ'S	FLIGHT EXP'MTS
DEVELOPMENT SYNTHESIS IMPROVEMENT	1, 2, 3, 5, 9, 14, 18, 49, 50, 51	9a, 49, 50, 51	24, 25, 26, 52	25	27, 28, 29, 30, 31, 32, 36, 40	28, 29, 30, 31, 32, 36	41	-
CHARACTERIZATION INSPECTION TESTING FAILURE ANALYSIS LIFE PREDICTION ENVIRONMENTAL EFFECTS	4, 5, 6, 7, 8, 9, 10, 11, 21	5a, 5b, 7, 9b, 10, 11, 21		-	33, 34,	8. 8. 8.	42, 43, 44	43, 44
MANUFACTURING PROCESSING FABRICATION JOINING	12, 13	12, 13	52	25	27, 28, 36	28, 36	45, 46	
BASIC UNDERSTANDING	2, 9, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23	9a, 19, 21, 22	25	25	37, 38, 39, 40	-	47, 48	1

NUMERALS CORRESPOND TO DEFINITION OF TECHNOLOGY REQUIREMENTS LISTINGS. DUPLICATION OF NUMERALS IMPLIES EITHER MULTIPLE APPLICABILITY OR CANDIDATE FLIGHT EXPERIMENT.

CROSS INDEX OF MATERIALS TECHNOLOGY

PROPULSION	POWER	STRUCTURES	APPLICATION	MAT
				MATERIAL
1, 8, 9 10, 22, 23 49, 50	2, 5, 9 10, 12, 14 16, 18, 23 50	3, 4, 6 7, 9, 10 11, 13, 15 17, 19, 20 21, 51	TECH REQ'S	METALS
22, 49, 50	5a, 5b, 12, 24, 25, 52 50	7, 9a, 9b, 10, 11, 13, 19, 21, 51	FLIGHT EXP'MTS	ALS
24, 25, 52	24, 25, 52	24, 25, 26	TECH REQ'S	CERA
52	52		FLIGHT EXP'MTS	CERAMICS
27	29, 30, 31 32, 25, 36 39, 40	27, 28, 29 30, 32, 33 34, 35, 37	TECH REQ'S	POLYMERS
	21, 32, 36	28, 29, 30 33, 34, 35	FLIGHT EXP'MTS	MERS
		38, 41, 42 43, 44, 45 46, 47, 48	TECH REQ'S	COMPOSITES
		43, 44, 46	FLIGHT EXP'MTS	SITES

SPACE MATERIALS TECHNOLOGY REQUIREMENTS Mission Driven

		DEFINITION OF TECHNOLOGY REQUIREMENT NO. 2
1.		HNOLOGY REQUIREMENT (TITLE): Higher Temperature PAGE 1 OF 4 rconductors
2.	TECH	INOLOGY CATEGORY:
		ECTIVE/ADVANCEMENT REQUIRED: Develop higher temperature super-
		ctors to allow development of improved extraterrestrial power systems,
		instruments, high-speed computers, and power transmission capabilities.
4.	CUR	RENT STATE OF ART: Experimental superconductors have critical
	temp	eratures up to 23 K. Systems have only operated to 4.2K.
		HAS BEEN CARRIED TO LEVEL 5
5.	Supe a no 23K	CRIPTION OF TECHNOLOGY erconductors with critical temperature above 77K are highly desirable for umber of space applications. Currently, critical temperatures up to have been shown in the laboratory, but only to 4.2 K in operating tems.
		p/l requirements based on: □ pre-a,□ a,□ b,□ c/d
6.	RAT	IONALE AND ANALYSIS:
	a.)	Improved superconductors with transition temperatures significantly higher than 20K would beneficiably impact a variety of space-related fields, particularly by reducing the bulk and cost of the required refrigeration equipment. Currently available superconductors require cooling to liquid helium temperatures; increases in the transition temperatures for useful superconducting materials to liquid hydrogen or liquid nitrogen temperatures would be quite advantageous.
	b.)	Superconductors are important components in a variety of applications. In the power field, magnetohydrodynamic and certain fusion power system concepts require strong field deriveable from superconducting magnets. The potential development of anti-matter power systems in the next century also should benefit from improved superconducting magnets.
		The speed and capacity of large computers is greatly increased through the use of superconductors to transmit information bits. This application is currently receiving attention for ground-based computers where the size of the refrigeration equipment is not a major problem. Increased superconducting transition temperatures would reduce the size of the required refrigeration equipment and enhance the use of higher-speed larger-capacity computers in space. TO BE CARRIED TO LEVEL

DE	FINITION OF TECHNOLOGY REQUIREMENT	NO. 2
1. T ECHNOLOGY Superconducto	Y REQUIREMENT(TITLE): Higher Temperature	PAGE 2 OF <u>4</u>
7. TECHNOLOG	Y OPTIONS:	
8. TECHNICAL	PROBLEMS:	
very low tem higher temp	electron-phonon coupling which promotes supercondumperatures also contributes to loss of superconduceratures. There are physical reasons for believin tivity may not be attainable above 40K in alloys o	tivity at g that
9. POTENTIAL	ALTERNATIVES:	
	ailable superconductors with large refrige the only apparent alternative.	ration
	ACCRANG OR UNDERTURBER TECHNOLOGY ADVANC	FMFNT.
10. PLANNED PR	ROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	
		:
	EXPECTED UNPERTU	JRBED LEVEL 7
11. RELATED	TECHNOLOGY REQUIREMENTS:	

DEFINITION O	FΤ	EC	HNC	OLC	GY	RE	QU	IRE	ME	NT					N	Ю.	2		
1. TECHNOLOGY REQUIR Superconductors	EM	EN'	Γ (Ί	riT)	LE)	: H1	ghe	r T	emp	era	tur	e		P	AG	E 3	OF	4	
12. TECHNOLOGY REQUIR	REM	EN	TS	SCI	IED			ND	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. 2. 3. 4. 5.																			
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4.																			
13. USAGE SCHEDULE:	τ-	_	T-	1	Τ-	_	_	Τ	1	1	1	Τ-	T	T	_	7	1		
TECHNOLOGY NEED DATE	\perp	$oldsymbol{\perp}$	_	_	1	-	\perp	_	1	1	1	1	1	+	\downarrow	-	+	ro1	AI
NUMBER OF LAUNCHES											1_	L	<u> </u>		1			_	

14. REFERENCES:

1.) Outlook for Space, NASA, July 15, 1975.

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 8. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DURINED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. __

1. TECHNOLOGY REQUIREMENT (TITLE): Higher Temperature
Superconductors

PAGE 4 OF 4

(continued)

6. There are a large number of particle and radiation detection instruments dependent on magnetic fields which would benefit from improved superconductors. These applications include spectrometers, radio telescopes, Josephson effect detectors, and others.

The advent of higher temperature superconductors would impact also on power transmission applications. These applications would include large solar power collection systems in space and routine transmission of large amounts of power on earth.

- c.) Quantitative description of systems improvements is not possible at the present time.
- d.) The advent of 77K-plus superconductors would significantly reduce the weight of the required refrigeration system and improve the efficiency of various superconducting components. New alloys and compounds would be fabricated by various techniques, including splat-cooling to obtain metastable structures. These materials would be characterized in terms of their transition temperatures and other electrical and magnetic parameters. Techniques for fabricating the most attractive materials into usable forms, such as clad cable, would be developed.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>3</u>
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>
2. TECHNOLOGY CATEGORY: 3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop new or mofor extraction of Al, Mg, Fe, Ti, Si, Th, ceramics, and glasse	
4. CURRENT STATE OF ART:	
HAS BEEN CARI	RIED TO LEVEL _
Justification and Scope: The orderly exploration and explosolar System is anticipated to include the establishment of small (3-12 men) at first but increasing with time into a metaphore permanent base. (100 plus men) The time scale suggested by envisions the establishment of the larger Lunar Colony by a 2000. This colony will become increasing more self-sufficientlying on lunar minerals as sources for oxygen and construct materials and becoming gradually independent from supplies Earth. Initially, it is expected that the lunar fines can be senter and cast into useful forms. Ultimately, materials such as Si, Th, ceramics, and glasses will need to be extracted from These extraction processes will be considerably different forms. P/L REQUIREMENTS BASED ON: PRE-A,	a Lunar Colony, uch larger y von Puttkamer bout the year ent with time, ctional shuttled from red or melted Al, Mg, Fe, Ti, m lunar minerals. rom those
6. RATIONALE AND ANALYSIS:	
TO BE CARE	RIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO2
1. TECHNOLOGY REQUIREMENT (TITLE): Lunar Extractive Metallurgy (low priorities)	PAGE 2 OF1
(Continued)	
5. developed for Earth use due to the considerably different (hard vacum, 1/6 G) and high cost of supplies such as war The probable complexities of such novel, lunar extractive strongly suggest early initiation of developmental studie assure their timely availability.	ter and power. e processes
It is anticipated that a 2 man yr/yr effort over a 5-year sufficient to identify the most promising lunar extraction Subsequent effort would then depend on the extent of fur- required and the then current time frame for Lunar colons	on techniques. ther development
Approach: Simulated lunar minerals would be crushed and variety of mechanical, electrical, and chemical processes products amenable to metal extraction. The processes more Earth for extracting the various metals of interest would ing points, modified as necessary to reflect Lunar conditions.	s to yield st useful on d serve as start-

I

DEFINITION OF TECHNOLOGY REQUIREMENT	NO4
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>2</u>
Environmental Interactions - Meteoroids and Radiation	
2. TECHNOLOGY CATEGORY:	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Continue to collect	and assess data
on the nature and magnitide of meteroid and space radiation eff	ects on metals
during space travel and on nuclear radiation effects on metals	from
radioisotopes and reactors. 1. CURRENT STATE OF ART:	
HAS BEEN CARE	RIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
Meteoroids. While meteoroids constitute a potentially dama space, the measurements and experiences to date strongly su actuality, the danger is not as great as was originally exp variation between expectations and experience is attributed difficulty of obtaining reliable data on the frequency, siz velocity, and distribution of meteoroids. Concern is lesse probable that no more than one spacecraft has been lost dury years to meteoroid impact. Currently, the need is for bett spacecraft can be more properly designed rather than overded desired degree of meteoroid protection.	aggest that, in sected. This I largely to the se, density, ened since it is ring the past 17 ser data so that
(Continued)	
P/L REQUIREMENTS BASED ON: PRE-A,	☐ A, ☐ B, ☐ C/D
6 RATIONALE AND ANALYSIS:	
Data on meteoroid and space radiation characteristics and ef materials must continue to be analyzed as they are accumulat significant problem areas must be addressed if and when they	ed. Specific
Nuclear radiation effects on materials must also continue to The nuclear environments expected in actual reactor applicat simulated as best possible during experimental exposures in applicable results. In particular, the effects of fast reac must be accurately characterized.	ions must be order to produce
TO BE CARE	MED TO LEVEL

NO4
PAGE 2 OF 2
lar flares ons and helium d Saturn lar flares, can nerally minimal, roid problem tion effects to
effects, the ally significant. (embrittlement For in-reactor rials must be tions. Shielding core materials, minimal effects. radiation effects onments become
effort on on materials radiation

DEFINITION OF TECHNOLOGY REQUIREMENT	NO5
1. TECHNOLOGY REQUIREMENT (TITLE): Development and Characterization of Refractory Metals for Space Power Systems	PAGE 1 OF <u>4</u>
2. TECHNOLOGY CATEGORY: Structural and Spacecraft/Mechanica	1
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop new alloys of	Cb, Ta, Mo, W,
and Re, characterize their properties, and develop appropriate	
techniques to support the development of extraterrestrial nucles propulsion systems. 4. CURRENT STATE OF ART: Many refractory alloys have been determined by the support of the support o	eveloped but are
inadequately characterized for long-time service. Specialized iniques need to be developed some applications. HAS BEEN CARR	Fabrication tech- IED TO LEVEL 3
5. DESCRIPTION OF TECHNOLOGY	
The short time creep behavior of most refractory alloys has ized. However, the long-time behavior (>1000 hrs.) needs to characterized, particularly as affected by grain size, contacorrosion. Corrosion reactions with liquid metal working flatudy, particularly as affected by contamints and impurities heat pipes. Sputter yield data is needed for refractory and to assist in the selection of materials for use in plasmas, electric thruster and MPD propulsion systems. Specialized for techniques need to be developed for fuel clads and heat pipe these applications will likely require additional alloy developed.	to be better mination, and luids need more s, for loops and d other alloys such as in fabrication es. Some of elopment.
P/L REQUIREMENTS BASED ON: PRE-A,	J A, ∐ B, ∐ C/D
6. RATIONALE AND ANALYSIS: (a) Two payload experiments are suggested in the refractory 1. Determination of space contamination effects (from residual gases) on operation of refractory metal/liq pipes; and 2. Determination of space contamination effects on cree refractory metals. In both of these experiments, retention of useful streng (several years) is the critical parameter.	near-space quid metal heat ep properties of
(b) Further development of refractory metals technology will fission, fusion and radioisotope power systems, various propulsion systems such as electric thrusters, and high-heat pipes for various applications.	advanced
(c) For most of these refractory metal applications, quantity improvement parameters cannot be given because the system early stages of development. In general, refractory metal required to assure.	ms are in such
TO BE CARRI	ED TO LEVEL 10

D' FINITION OF TECHNOLOGY REQUIREMENT	NO. 5
1. TECHNOLOGY REQUIREMENT(TITLE): Development and Charac-	PAGE 2 OF <u>4</u>
terization of Refractory Metals for Space Power Systems	
7. TECHNOLOGY OPTIONS:	
TROUWALL SHOPLING	
8. TECHNICAL PROBLEMS:	
9. POTENTIAL ALTERNATIVES:	
The problem of space contamination of refractory metals may be partially alleviated through the use of shields.	at least
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	EMENT:
The long time creep behavior of columbium alloy C - 103 is bei in support of the Mini-Brayton Radioisotope Power System (2 KW	ng studied (e) under RTOP
506-23-4	
EXPECTED UNPERTU	JRBED LEVEL 7
11. RELATED TECHNOLOGY REQUIREMENTS:	
•	

NO. 5 DEFINITION OF TECHNOLOGY REQUIREMENT 1. TECHNOLOGY REQUIREMENT (TITLE): Development and Charac- PAGE 3 OF 4 terization of Refractory Metals for Space Power Systems 12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 SCHEDULE ITEM **TECHNOLOGY** 1. 2. 3. 4. 5. APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations

14. REFERENCES:

13. USAGE SCHEDULE:

TECHNOLOGY NEED DATE
NUMBER OF LAUNCHES

- 1. Outlook for Space, NASA, July 15, 1975
- 2. W.D. Klopp, LeRC, Aug. 12, 1975

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR READBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.

TOTAL

- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT
- 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL,
- 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. 5

1. TECHNOLOGY REQUIREMENT (TITLE): Development and Characterization of Refractory Metals for Space Power Systems

- 6. (continued) adequate system lifetimes.
 - (d) Ultimately, the development and characterization of refractory alloys must be carried to Level 10, "lifetime extension of an operational model." This will require several decades of development and operating experience in the intended applications.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 6	
1. TECHNOLOGY REQUIREMENT (TITLE): Fracture Toughness/ PAGE 1 OF 2	
Strength Optimization of High Strength Structural Alloy Systems	
2. TECHNOLOGY CATEGORY: (9) Structural and Spacecraft Mechanical	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Improvement in fracture toughness	
of medium-high strength structural alloys K Ic/oYS ≥1 for ferrous alloys and	
titanium alloys	
4. CURRENT STATE OF ART: Kic/FYS =.5 (ferrous alloys)Kic/FYS =0.75	
titanium alloys HAS BEEN CARRIED TO LEVEL	
5. DESCRIPTION OF TECHNOLOGY	
Structural metal alloy systems have reached a highly matured state of development in achieving high static strength levels through alloying additions and process treatments. However, the utilization of materials at high static strength levels has resulted in problems of fracture control of hardware where failure is manifested by defect or crack instability. Higher strength levels have generally been accompanied by lower fracture toughness properties in a given alloy system. This in turn can result in fracture instability at smaller defect or flaw sizes more difficult to identify through inspection techniques. The utilization of materials in this high strength condition has resulted i. service failures which currently force the design specialist to sacrifice strength in order to achieve some desirable fracture control. (continued)	
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D	
6. RATIONALE AND ANALYSIS:	
Improvements in fracture toughness of high strength structural metals in the near term will be obtained by a more thorough understanding of the micro-mechanical processes governing crack instability in given alloy systems and subsequent optimization of thermal and mechanical treatments and more complete characterization of strength-toughness properties over the entire range of conditions obtainable. This will be accomplished largely through experimental programs. Improvement of fracture toughness of high strength materials over the long term will require advanced alloy development programs.	
TO BE CARRIED TO LEVEL	

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. _

1. TECHNOLOGY REQUIREMENT (TITLE): Fracture Toughness/ PAGE 2 OF 2

Strength Optimization of High Strength Structural Alloy Systems

This design rationale now dictates a weight penalty in primary structure and tankage materials in the Space Shuttle and could have similar impact on advanced space transportation systems.

> REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

DEFINITION OF TECHNOLOGY REQUIREMENT NO
1. TECHNOLOGY REQUIREMENT (TITLE): Utilization of PAGE 1 OF 1
Magnesium Beryllium and Beryllium-Aluminum Alloys in Advanced Space
2. TECHNOLOGY CATEGORY: (9) Structural and Spacecraft Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: To provide additional data base relating to secondary design considerations for use of thin gage, light alloys
in advanced spacecraft application
4. CURRENT STATE OF ART: Utilization of alloys 0.5 - 1.0 mm thick in non-
space environments
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
The need for high stiffness critical large space structure for application as antennae members, space station components, and power generation components will require additional development and chacterization for beryllium and beryllium-aluminum alloys.
The high stiffness/density ratio beryllium and beryllium-aluminum alloys coupled with the potential for utilizing metals and joining technology make these alloys strong candidates for stiffness critical members of large space structures.
P/L REQUIREMENTS BASED ON: ▼ PRE-A, ☐ A, ☐ B, ☐ C/D
6. RATIONALE AND ANALYSIS:
Deficient technology areas include process optimization for reducing costs, understanding and dealing with potential toxicity problems, and expanding the data base for secondary design considerations including earth environment time dependent processes of corrosion and fatigue, and improvement in toughness of these alloys.
Identification of high cost process variables and optimization of manufacturing technology for frabricated hardware is necessary, and experimental programs to characterize material performance under mission simulation requirements should be conducted. A development program for improved toughness of these alloys should include thermomechanical processing techniques.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 8	
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1	
Low Cycle Thermal Fatigue of Superalloys	
2. TECHNOLOGY CATEGORY:	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop data on low cycle thermal	
fatigue of currently available alloys over range of casting, forging and heat	
treating conditions for extending life of turbo pump components in high- pressure liquid rocket motors.	
CURRENT STATE OF ART:	
HAS BEEN CARRIED TO LEVEL	
5. DESCRIPTION OF TECHNOLOGY	
Data are required to determine maximum temperature operation in air oxygen and hydrogen, at reversed stresses into the plastic zone of super alloys such as Incoloy 713 C and Mar M 246 for use in nozzles, rotors and blades of high-pressure turbo-machinery. Even minor improvements of Space Shuttle Main Engine life based on a firm prediction of material characteristics will result in major cost savings. Scope: The large number of specimens necessarily requires that this program will take at least 2 years and employ some very specialized test apparata for the high pressure phase, at least.	
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D	
6. RATIONALE AND ANALYSIS:	
Space Shuttle Main Engine and other Advanced flight-weight turbo-pumps have a limited life because they are often stressed to near-yield on each run-up at the same time they are exposed to maximum operating temperatures and an embrittling environment such as hydrogen gas at high pressure. Simple improvements in heat-treatment, surface conditioning or coatings could greatly increase life. Even an understanding of what variable in the environment is the most deleterious could lead systems designers to optimize conditions for improved cyclic life. This is a case where a better understanding of available alloys would be helpful.	
TO BE CARRIED TO LEVEL	

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 9
1. TECHNOLOGY REQUIREMENT (TITLE): Fatigue, Fracture and PAGE 1 OF 4 Life Prediction of Metallic Structures Exposed to Chemical Environments.
2. TECHNOLOGY CATEGORY:
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop an adequate understanding of the time dependent interaction of chemical environments with metallic
materials such that the life-time of space related structures may be extended and/or their failure may be accurately and reliably predicted. (Cont'd) 4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY If we are to reliably and accurately predict the life of metallic structures exposed to space related, chemical environments, we must develop the basic understanding of the kinetic and mechanistic aspects of both the interaction processes and the processes by which degradation can occur. Because these are complex problems we must use an ordered approach; first developing our technology on the simplest alloy systems in the more complex and combined environments as indicated in the enclosed flow chart. Simultaneously we must maintain our ability to develop immediate solutions to specific engineering, chemical compatability problems. Our goal must be to develop the basic understanding of the chemical interactious and the processes of degradation. With this, we will be able to develop accurate and reliable, quantitative models for life prediction,
to develop accurate and reliable, quantitative models for life prediction, to select optium alloys and microstructures for use in space related chemical environments and to develop our potential to design alloy systems for use in space and planetary environments BASED ON: P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/D
As the use of space increases, the demands on materials will become more and more severe. Payload sizes will grow and the need for light weight, high strength structures will increase. Some will require reuse. Flight durations will increase extensively with corresponding increases in the length of environmental exposure. Comet and asteroid rendezvous and planetary entry and exploration will become realities. Such increases in the profiles of the missions will demand an increased understanding of, and the ability to predict, the potential degradation of structural materials exposed to potentially aggressive chemical environment be they gaseous, liquid or solid. Under the present mission model, our lack of understanding and our inability to accurately predict the potential degradation of metallic structures
exposed to potentially active chemical environments limits the efficient utilization of materials. For example the use of light weight, high strength titanium alloys or high strength steel alloys to replace the less efficient aluminum structures is limited by our knowledge and ability to control their degradation by simple chemical environments such as salt water, humidity, or gaseous hydrogen.

TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. ____

1. TECHNOLOGY REQUIREMENT (TITLE): Fatigue, Fracture and PAGE 2 OF 4
Life Prediction of Metallic Structures Exposed to Chemical Environments.

(Continued)

Chemical environments include gas, liquid and solid phase environments such as those anticipated to be encountered on earth, in space and during planetary entry and exploration. To be identified are the specificity of the interactions; the kinetic influences of temperature, pressure and potential synergistic effects fo combined and/or changing environments; and mechanisms of degradation including the influences of metallurgical parameters such as microstructure and alloy additions and external parameters such as mode of loading and degree of stress triaxiality in order that the optimum material can be selected for the specific space related applications.

6. (Continued)

In general, predictive models for flaw growth in aggressive chemical environments are non existent. Even our ability to accurately identify critical structural areas which may require continued monitoring or refurbishment in reusable structures is many times lacking.

In low-earth-orbit transportation systems the use of heavy hydrocarbon propellants to replace sold propellants will require a significant technological advance in our ability to predict the behavior of light weight, high strength metals as reusable tankage. Even our ability to accurately predict the life-time of a light weight, reusable hydrogen tank is lacking.

The safe removal of many hazardous payloads from earth will require a significant advance in our understanding of the interaction of a metal with its chemical environment. As an example, nuclear waste disposal will require containment of severely chemically aggressive material with total and complete assurity even during a launch pad abort or a mission abort and return to earth. Similar problems are found to exist in the transport of nuclear systems into siace for space power and propulsion or for power generation for use on earth. Such applications of materials will require complete and accurate life prediction models which presently are not available.

During extended missions, where times become very long, material combinations which are normally considered compatable may be found to be incompatable. Problems may be encountered not only in the long term storage of active propellants such as ammonia or metastable hydrogen but also in the compatability of normally consider safe interactions such as coatings, platings, or any area in where dissimilar metals may be in contact. For very long time life-prediction the time dependent interactions of active environments must be totally understood in order that accellerated testing techniques may be developed to reliably predict the life-time of metallic structures in contact with chemical environments normally thought to be non-reactive.

The anticipated rendezvous with comets and asteroids and planetary probes landers and rovers will require a significant technology advance in our (Cont'd)

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. $\frac{9}{}$

1. TECHNOLOGY REQUIREMENT (TITLE): Fatigue, Fracture and PAGE 3 OF 4
Life Prediction of Metallic Structures Exposed to Chemical Environments.

6. (Continued)

understanding of materials compatability. As an example, the life time of most efficient structural metals exposed to these potentially severe conditions of pressure, temperature, ad corrosive environment can not presently be predicted.

Finally, our materials technology has been primarily designed for use in the chemical environment of earth. This technology may not be the best for materials use in the total chemical environments of space, the moon or other planets. Many alloy systems which have proved to be poor performers or which would never be considered for development on earth may perform very well in the special chemical environments encountered in space. As an example, alloy systems having major or minor concentrations of the earth-reactive elements of Lithium, sodium, potasium, and others may yield unique properties which could not be obtained and in fact may never have been considered through the use of our earthbased technology. Such systems should be explored in detail for the more efficient use of materials in space.

DEVELOPMENT OF AN UNDERSTANDING OF FATIGUE, FRACTURE AND LIFE PREDICTION IN SPACE AND SPACE RELATED CHEMICAL ENVIRONMENTS

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 10
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 2
NDT/NDE - Earth and Space
2. TECHNOLOGY CATEGORY:
3. OBJECTIVE/ADVANCEMENT REQUIRED: To advance the technology of non-
destructive methods for the detection and evaluation of (Cont'd)

4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
The probability of detection and the estimate of flaw size vary with the non-destructive technique employed and the size and nature of the flaw.
Moreover, the human factor carries a very high weight in such determinations
P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/D
6. RATIONALE AND ANALYSIS:
Specimens representing different geometries containing defects of various
types and sizes will be examined non-destructively in both space and earth
environments in order to determine, on a probability basis, the lower limit of flaw detection and flaw size and shape. After such evaluations, the
specimens will be destructively examined in order to determine the exact
nature of the flaws.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 10			
		DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>10</u>
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 2 OF 2 NDT/NDE - Earth and Space	1. —	• • • • • • • • • • • • • • • • • • • •	PAGE 2 OF 2
3. (Cont'd) macroscopic flaws in metallic materials with primary emphasis on standardization of procedures and interpretation and quartization of results, and to incorporate such information within design, manufacturing, and service stages of components and structures.	3.	macroscopic flaws in metallic materials with primary en standardization of procedures and interpretation and qu results, and to incorporate such information within dis	uar tization of

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 11		
1. TECHNOLOGY REQUIREMENT (TITLE): Development of Elastic- PAGE 1 OF 2 Plastic Failure Criteria		
2. TECHNOLOGY CATEGORY:		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To establish the dependence of the		
degree of stress triaxiaility and other factors which promote plastic behavior		
on the subcritical flaw growth in space related metallic structures. (Cont'd)		
1. CURRENT STATE OF ART:		
HAS BEEN CARRIED TO LEVEL		
5. DESCRIPTION OF TECHNOLOGY		
In a number of space related structures, materials and/or designs will be employed in which local yeilding of the structure will occur prior to failure. Examples of such structures include, but are not limited to large, thin wall, space tankage. Under such conditions, it is imparative to quantitatively understand the influence of localized plastic behavior on the time dependenc parameters of subcritical flaw growth rate and strain-energy release rate. Such parameters are required in order to accurately and reliably predict the lifetime of a specific metallic structure and to reliably predict its mode of failure, i.e., leakage or catastrophic fracture. Such criteria presently are not available. Additionally, a knowledge of elastic-plastic behavior will permit a better prediction of the critical monitoring points which will indicate the need for refurbishment in reusable space structures.		
P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/D 6. RATIONALE AND ANALYSIS:		
To adequately predict the elastic-plastic behavior of most structural members in space, we must develop accurate and reliable failure criteria. In order to do this, the contribution of plastic zon size or degree of stress triaxiality to the rates of subcritical crack growth and energy release must be established as a function of both material and configurational parameters. Mechanical strength and ease and form of plastic deformation are examples of material parameters, while wall thi kness is a configurational parameter. From this knowledge stardardized test techniques can be established and an accurate and reliable failure criteria can be developed.		
TO BE CARRIED TO LEVEL		

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. 11

1. TECHNOLOGY REQUIREMENT (TITLE): Development of Elastic- PAGE 2 OF 2
Plastic Failure Criteria

3. (Cont'd)

To develop the quantitative understanding required for predictive models which may be used to establish elastic-plastic failure criteria as applied to unique space structures, such as thin wall containers, in an effort co better understand the conditions underwhich leakage or rapid failure may occur.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 12		
1. FECHNOLOGY REQUIREMENT (TITLE): Solar Cell Solder PAGE 1 OF 1 Connections with Extended Life During Thermal Cycling in Orbit		
2. TECHNOLOGY CATEGORY:		
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop an improved joint-solder		
combination for silicon solar cells to eliminate embrittlement by inter-		
metallic compound formation and, thereby withstand prolonged thermal cycling		
in orbit. L. CURRENT STATE OF ART:		
HAS BEEN CARRIED TO LEVEL		
5. DESCRIPTION OF TECHNOLOGY		
Currently, lead-tin solder reacts with silver and titanium barrier and contact layers causing embrittlement and mechanical breakage of individual joints resulting in reduced power output with time in orbit.		
A study of the compatability and reactivity of metals in the contact, barrier and solder to eliminate formation of embrittling inter-metallic compounds will lead to new barrier layers or improved solders for solar cells.		
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D		
6 RATIONALE AND ANALYSIS:		
Solar cell arrays operating in earth orbit go through a large thermal gradient as much as 120°C from sun to earth shadow. Most of the effects of the thermal gradient can be accounted for in designs (e.g., thermal expansion) but embrittlement of the solder joint to the contact layer on the cell cannot. Hard inter-metallic compounds are formed by diffusion which become loss in power output. Heretofore, large solar arrays (skylab, HEAD, etc.) have been over-designed in expectation of reduced output with time. However, longer life and increase of power requirements for energy programs in space or on earth will preclude such a cavalier characteristic at the problem. This can be solved by careful attention to the metallurgical bond in the joint and barrier layer.		
TO BE CARRIED TO LEVEL		

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 13		
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1 Joining Metals in Space		
2. TECHNOLOGY CATEGORY:		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To easily and reliably produce strong metallurgical bonds for the space assembly of metallic structures by utilizing		
cold resistance, and explosive welding techniques.		
+. CURRENT STATE OF ART:		
HAS BEEN CARRIED TO LEVEL		
5. DESCRIPTION OF TECHNOLOGY		
The placement of very large structures in space, e.g., antennae, solar cell arrays, etc., necessitates their fabrication "in-situ." Thus, modular subsystems or individual components must be joined in the space environment.		
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/		
6. RATIONALE AND ANALYSIS:		
In the case of cold welding, clean metal surfaces are brought into intimate contact under moderate pressures which are less than those required to produce yielding. Slight relative displacements of the mating surfaces are employed to insure proper contact. Resistance welding may be accomplished in much the same way although the temperature of the joint is elevated by the passage of electric current. In the case of explosive welding, a contained explosive seam welding technique will be employed.		
TO BE CARRIED TO LEVEL _		

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 14	
1 TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>	
Basic Studies of Electromigration in Metals and Alloys		
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To obtain a basic und		
of the electromigration process in metals and alloys in order to		
in the alleviation of the phenomenon as it occurs or will occur in microcircuitry. 1. CURRENT STATE OF ART:		
i. Comen of an .		
HAS BEEN CARE	IED TO LEVEL	
5. DESCRIPTION OF TECHNOLOGY		
Theoretical and experimental studies extending present work.		
incorporat and emperational description of the property were		
P/L REQUIREMENTS BASED ON: ☐ PRE-A,[7 4 C B C C/D	
6. RATIONALE AND ANALYSIS:		
W. RATIVIALL AND ANALISIS:		
The electromigration phenomenon occurs at high current densities such as those found in connecting elements in microcircuits (~10 amp/cm²). Under conditions of high current density mass displacement occurs and breaks can form in the connectors. Theoretical studies have defined the phenomenon to a degree and steps to alleviate the problem have been successful in circuits of the present state of miniaturization. It is anticipated that the problem will arise again as reductions in circuit size occur. The research should be supported at least at its current level.		
TO BE CARR	IED TO LEVEL	

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 15		
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1 Theoretical Studies of Diffusion in Alloys		
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop a quantitative theory of diffusion in alloys that will permit prediction of diffusion rates in alloys of		
applications interest.		
4. CURRENT STATE OF ART:		
HAS BEEN CARRIED TO LEVEL		
5. DESCRIPTION OF TECHNOLOGY		
Studies including		
 Calculation of energy of formation and number of vacancies. Definition of elementary jump processes in ordered and unordered systems. Relation of bonding energy and activation energy for diffusion. Impurity diffusion. 		
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D		
6. RATIONALE AND ANALYSIS:		
The wide variety of solid systems for which the ability to quantitatively predict diffusion behavior is needed suggests that the need for basic research in this field will be long-standing. At present the capabilities of prediction in the field of alloys is very sketchy. The desirability of predictive capability is obvious in terms of the costs and the difficulty of experimentally determining diffusion data.		
TO BE CARRIED TO LEVEL		
10 BE CARRIED TO DEVEL		

DEFINITION OF TECHNOLOGY REQUIREMENT	NO16	
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>	
Basic Studies In Catalysis		
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To obtain a fundamental understanding		
of catalyst structure and the mechanism by which catalysts funct		
provide guidance for formulations for fuel cell oxygen electrode, propellant catalysts and life support gas conditioning. 4. CURRENT STATE OF ART:		
HAS BEEN CARRI	ED TO LEVEL	
5. DESCRIPTION OF TECHNOLOGY		
Studies including		
 Theoretical specification of compounds having D-band structure those of active transition metals. Effect of purity, surface area and surface plan orientative efficiency (possible space preparation of samples) Studies of the nature of active sites. Theoretical calculation of potential distribution and absorbed molecules. 	ion on catalytic	
p/l requirements based on: ☐ pre-a, ☐	A, □ B, □ C/D	
6. RATIONALE AND ANALYSIS:		
The mode by which a catalyst functions in terms of an atomic or molecular mechanism is still unknown. Recent theoretical research in two areas gives promise of enlightment. One is the calculation of the perturbation of the interatomic potential in the surface as an atom or molecule approaches. Indications are that alterations result in the electronic structure of the absorbed species in a way that would increase it's chemical reactivity. The other theoretical approach propose that the d-band structure of catalystic metals can be duplicated in compounds such as carbides. The test of this hypothesis is worthy of substantial support. Finally, new methods of preparation of catalyst metals if high purity and fine subdivision should be used and their effects investigated.		
TO BE CARRI	ED TO LEVEL	

DEFINITION OF TECHNOLOGY REQUIREMENT NO		
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1		
Basic Studies of the Mechanisms of Hydrogen Embrittlement		
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop fundamental understanding		
of the solid state and surface chemical processes that are involved in the		
hydrogen embrittlement phenomens on order to provide guidance in prediction or elimination of undesirable effects. CURRENT STATE OF ART:		
HAS BEEN CARRIED TO LEVEL		
5. DESCRIPTION OF TECHNOLOGY		
Studies such as		
 Theory of Hatom-dislocation interactions Study of Hatom interaction with the crack tip Mechanism of hydrogen dissociation on surfaces-catalysts and poisons Mechanism of delayed fracture. 		
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D		
6 RATIONALE AND ANALYSIS:		
The problem of hydrogen embrittlement presents itself in a wide variety of situations. A nonexhaustive list includes stress corrosion cracking, of titanium by alcohols, delayed fracture of Nickel bearing materials exposed to hydrogen, fracture of hydrogen containing tankage and piping. The wide variety of phenomona in which hydrogen plazsa role implies a multiplicity of mechanisms. Both theoretical and experimental studies are needed and should involve multidisoplinary approaches by physicists, chemists and metallurgists. The present expenditure of effort by NASA should be augmented.		
TO BE CARRIED TO LEVEL		

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.	18
1 TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1	OF <u>1</u>
Basic Studies of New Concepts for Solar Cells		
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To examine relevant p		
in order to develop more efficient methods for conversion of sol	ar energ	y to
electricity.		
1. CURRENT STATE OF ART:		
HAS BEEN CARR	IED TO I	EVEL
5. DESCRIPTION OF TECHNOLOGY	To the second se	
Studies such as		
1. Electron-phonon interactions in semiconductors		. [
Study of sensitized optical absorption by dye incorporat methods.	ion or o	ther
3. Investigation of applicability of materials other than s	silicon-e	.g.,
gallium arsenide.		i
		ĺ
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐] A, [] B	,□ C/D
6. RATIONALE AND ANALYSIS:		
The direct conversion of solar energy to electricity has many	advanta	ges in
terms of simplicity both in structure and size. The main dis		
low efficiency imposed by the limited wave length bond involvis also a limiting factor and will increase an importance as		cost pace
structures are considered. At some time the cost of development	ent of so	lar
cell materials other than silicon (whose development costs we borne by other application needs) will become reasonable in		
factors like larger demand. Gallium arsenide is a possible of	andidate	•
Demands for lower costs should also spur basic investigation of usable spectral width by the use of dye sensitization and		
means.	permaps (ochei
TO BE CARRI	ED TO L	EVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 19		
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1		
Solid State Diffusion Studies in Space		
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To obtain diffusion data for systems		
requiring very high temperatures and containerless conditions for the purpose		
of information on high temperature materials.		
1. CURRENT STATE OF ART:		
WAG BEEN GARAGE		
HAS BEEN CARRIED TO LEVEL		
5. DESCRIPTION OF TECHNOLOGY		
Diffusion experiments involving exposure of samples at high temperature in the absence of container materials. Sectioning and analysis to be performed on return to earth.		
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D		
6. RATIONALE AND ANALYSIS:		
O. MATIONALE AND ANALYSIS:		
Diffusion experiments are normally limited to a temperature range whose lower limit is governed by reasonable time and whose upper limit is governed by available means for heating as well as problems of sample interaction with container materials. The zero gravity and high temperature capabilities in space are especially useful for diffusion studies in high temperature materials. The results would be of great value because 1. They would eliminate the need for inaccurate extrapolation of long time, low temperature experiments and 2. They would make data available for the investigation of possible changes in diffusion mechanism at high temperatures.		
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR TO BE CARRIED TO LEVEL		

DEFINITION OF TECHNOLOGY REQUIREMENT	NO	
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>	
2. TECHNOLOGY CATEGORY: Basic Materials Research 3. OBJECTIVE/ADVANCEMENT REQUIRED: To provide diffusion	data for test of	
theoretical formulations and to generate a fund of data for sys		
practical interest.		
4. CURRENT STATE OF ART:		
HAS BEEN CARE	RIED TO LEVEL	
5. DESCRIPTION OF TECHNOLOGY		
Well-controlled diffusion experiments designed to provide diffusion constants and activation energies in a variety of alloy systems.		
P/L REQUIREMENTS BASED ON: ☐ PRE-A,] A, ☐ B, ☐ C/D	
6. RATIONALE AND ANALYSIS:		
The needs for carefully obtained diffusion data are twofold. for the development and verification of theoretical formulations second is for the generation of data for systems of frequent	ions. The	
TO BE CARR	IED TO LEVEL	

EFFINITION OF TECHNOLOGY REQUIREMENT	NO
1. TECHNOLOGY REQUIREMENT (TITLE): Phase Diagram Studies in Space	PAGE 1 OF <u>1</u>
2. TECHNOLOGY CATEGORY: <u>Basic Materials Research</u> 3. OBJECTIVE/ADVANCEMENT REQUIRED: To perform phase diagram studies of phase relation shifts re	esulting from
low pressure.	
1. CURRENT STATE OF ART:	
HAS BEEN CARR	RIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
Construction of phase diagrams by exposure in space and analy return to earth. Systems to be studied initially would be experimental convenience. Later studies on systems of imposto space processing.	for
DA DECUDEMENTS DASED ON. T. DRE A.	7 4 0 8 0 6/0
P/L REQUIREMENTS BASED ON: PRE-A,] A, [] B, [] C/ D
Experience with vacum melting has shown that under low pressuredations shift enough from those indicated in phase diagrams at one atmosphere to cause non-homogeniety and gas bubble for is expected that the problem will also exist in space process. Construction of the pertinent portions of the phase diagram in space because the gravitational effects on the sample general which can not be tolerated.	s determined rmation. It sing. must be done erate pressures
TO BE CARR	IED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 22
1. TECHNOLOGY REQUIREMENT (TITLE): Measurement of Vapor PAGE 1 OF 1 Pressure of Corrosive Materials (Space Experiment)
2. TECHNOLOGY CATEGORY: Basic Materials Research
3. OBJECTIVE/ADVANCEMENT REQUIRED: To provide thermodynamic property data for nonmetallic materials whose corrosiveness requires that the
measurements be done with levitation and with no container contamination.
1. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Langmuir vaporization rate studies compiled with mass spectrometric identification of vaporized species. Specimens to be heated and exposed to high vacuum by shielding from spacecraft outgassing.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D
6 RATIONALE AND ANALYSIS:
There are many materials whose vaporization modes or themodynamic properties are poorly known because of their interaction with container materials. One example is sodium sulfate which is a critical factor in the hot corrosive phenomenon: widely varying data are obtained with various container materials. It is of great importance to the solution of the hot corrosive phenomenon to obtain better data. Hot corrosion of the extreme concern for aircraft turbine brackets, marine turbines and terrestrial power stations.
The need for data obtainable by this experimental technique can be cited for other instances as well.
TO BE CARRIED TO LEVEL.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.	_23
1. TECHNOLOGY REQUIREMENT (TITLE): Basic Studies of Gas-Surface Reactions	PAGE 1	OF <u>1</u>
2. TECHNOLOGY CATEGORY: Basic Materials Research		
3. OBJECTIVE/ADVANCEMENT REQUIRED: To gain an understand	ing of t	he
details of the interaction of gas molecules with solid surfaces.		
1. CURRENT STATE OF ART:		
HAS BEEN CARRI	ED TO I	EVEL _
5. DESCRIPTION OF TECHNOLOGY		
Studies such as:		
1. ESCA and Auger studies of chemisorbed films		ļ
 Rate measurements using microbalance Mass spectrometric analysis of volatile reaction product 	S	
of surface reactions.		
		į Į
P/L REQUIREMENTS BASED ON: PRE-A,	A, 🗌 I	3,□ C/D
6 RATIONALE AND ANALYSIS:		
The interaction of material surfaces with the environment is interest in widely varying circumstances—from the entry of tinto the atmosphere of Venus or Jupiter to the oxidation—corr terrestrial devices. New instrumentation is providing means a better microcopic understanding of the details of phenomena chemisorption and physisorption, both of which are steps in greactions. It is now possible to qualitatively, and in some quantitatively, determine the nature of the adsorbed layer (b and valence state), the distribution of the various species of surface, as well as in cross section, and the rate of deposit (Research of this type is also of importance to the understance catalysis.) Research in this area should be supported and as	he sp. le osion of for gain such as as-surfacases oth iden ver the ion.	ecraft ing ing ice ntify
TO BE CARRI	ED TO I	FVFI

DEFINITION OF TECHNOLOGY REQUIREMENT NO	24
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 C)F <u>1</u>
2. TECHNOLOGY CATEGORY:	
3. OBJECTIVE/ADVANCEMENT REQUIRED: To provide the technology for improved high temperature insulations.	
4. CURRENT STATE OF ART:	
H. S BEEN CARRIED TO LE	VEL_
5. DESCRIPTION OF TECHNOLOGY	
Improvements in space power, propulsion, and re-entry systems could be achieved in part with new or improved high temperature insulating materials. Power and propulsion systems can perform more efficiently at higher temperatures, but the associated hardware will need to be protected. Advanced space transportation systems and planetary probes also require higher temperature insulating materials between the TPS and the load-bearing structure.	3
P/L REQUIREMENTS BASED ON: PRE-A, A, B,	□ c/p
6. RATIONALE AND ANALYSIS:	
Low thermal conductivity materials should be investigated for their thermal and mechanical properties at temperatures above 1200 degrees C, the limit of current insulations. These studies should be conducted at temperatures up to 1800 degrees C, or where radiative heat transfer predominates over conduction. Refractory additives should be investigated that may block radiative heat transfer. Candidate materia for investigation should include zirconia, hafnia, the refractory metal carbides, nitrates, borides, the zirconates, titanates, and the silicat of the refractory systems should then be studies for their fiberizing qualities with the goal of producing fibers with diameters less than 3 mils.	ils
TO BE CARRIED TO LET	VEI]

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.	26
1. TECHNOLOGY REQUIREMENT (TITLE): Ceramic Fibers for Composites	PAGE 1	OF <u>1</u>
2. TECHNOLOGY CATEGORY:		
3. OBJECTIVE/ADVANCEMENT REQUIRED: Provide fibers havin	g low coef	ficients
of thermal expansion (CTE) for composites for large space struc		
1. CURRENT STATE OF ART:	-	
HAS BEEN CARE	RIED TO LI	EVEL_
5. DESCRIPTION OF TECHNOLOGY		
Three classes of materials are known to possess low thermal coefficients—graphite, amorphous silica, and lithium alumi Additional material systems should be sought. Variations i systems should be synthesized and processed under different These materials should also be characterized for their CTE of modulus and strength. The CTE of graphite may be lowere CM/CM/OK or less with new precursers. Heat treatments may of silica also to oil or lower. A negative CTE may be desi compensate for a positive CTE of the matrix. The lithium a system should be studies for this application.	num silican each of condition as a funct d to oil lower the rable to	these s. cion
P/L REQUIREMENTS BASED ON: PRE-A,] A, □ B,	. C/D
6 RATIONALE AND ANALYSIS:		
Missions in the 1985-2000 period will require structures for purposes on the order of 100 to 1000 meters in length or dia stability between major elements in the millimeter to centim Such large structures, in addition to being light weight, lo for long times in the space environment, must be thermally i ceramic systems are potentially promising for these requirem be investigated.	meter, and eter range w cost, st nert. Sev	l with a. able veral
TO BE CARR	IED TO LE	VEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>27</u>
1 TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF 4
Large Area Polymer Films for Space Applications	
2. TECHNOLOGY CATEGORY: Propulsion, Structural & Spacecraf	t/Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: The objective of thi	
evaluate, adapt, and develop processes for the fabrication of 1	arge-area, thin
polymer films for space applications.	
+. CURRENT STATE OF ART:	
HAS BEEN CARE	RIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
See Page 4	
P/L REQUIREMENTS BASED ON: PRE-A,] A,
6 RATIONALE AND ANALYSIS:	
The Office of Space Science (OSS) has indicated the need for sailing spacecraft with the ability to gain 10 to 50 Km/sec. speed after Earth departure. This type of propulsion would Comet and Asteroid Rendezvous and Sample Return Missions and require the utilization of a large area, thin polymer film f sail.	additional be used in would
The Aerospace Corporation input to the current OASR workshop the need for large area (200m2) polymer films for substrate unfolding antennas and for large diameter space mirrors.	
Polymer films with the large areas required are not presentl and will require development and adaptation to meet the requsuch applications.	
TO BE CARR	IED TO LEVEL 5

į

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 27
1. TECHNOLOGY REQUIREMENT(TITLE):	PAGE 2 OF 4
Large Area Polymer Films for Space Applications	
7. TECHNOLOGY OPTIONS:	
8. TECHNICAL PROBLEMS:	
9. POTENTIAL ALTERNATIVES:	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVA	NCEMENT:
See Page 4	
EXPECTED UNPER	TURBED LEVEL
11. RELATED TECHNOLOGY REQUIREMENTS:	
Propulsion, Power, Structures	

DEFINITION OF TECHNOLOGY REQUIREMENT							NO. 27												
1. TECHNOLOGY REQUIREMENT (TITLE): Large Area Polymer Films for Space Applications											þ	PAGE 3 OF 4				_			
12. TECHNOLOGY REQUI	₹EN	IEN	TS	SCI	IED			ND.	AR	YE.	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1.Test & Evaluation 2.Fabrication Developmen 3.Handling Development 4. 5.																			
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4.																			
13. USAGE SCHEDULE:															,	_	,	,	
TECHNOLOGY NEED DATE	_	$oldsymbol{\perp}$					_	1		_	_	_	_	_	-	<u> </u>	ר	TOT	AL
NUMBER OF LAUNCHES																_			

14. REFERENCES:

- a. OSS Technology Requirements Input ot OAST Workshop
- b. Aerospace Corporation Input to OAST Workshop.

15. LEVEL OF STATE OF ART

- 1. PASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 5. COMPONENT OR RREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OPERATION OF MODEL,

DEFINITION OF TECHNOLOGY REQUIREMENT	NO
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 4 OF 4
Large Area Polymer Films for Space Applications	

Commercially available polymer films, such as Kynar, Mylar, Kapton, TFE Teflon, FEP Teflon and polyethylene will be evaluated for tear and tensile strengths as well as fold and crease resistance. Joining methods, including heat sealing, adhesive bonding and mechanical fastening, as applicable will be developed and evaluated for the fabrications of the large areas required. Selection and evaluations of coatings and coating application methods will be conducted to provide high radiation resistance, high thermal emittance and low solar absorptance to the films. In addition, packing and storage methods suitable for coated films of this type will be devised and studied.

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 28
1. TECHNOLOGY REQUIREMENT (TITLE): Adhesive Bonding of Large, Erectable Structures In Space	PAGE 1 OF <u>4</u>
2. TECHNOLOGY CATEGORY: Structural & Spacecraft/Mechanical	
3. OBJECTIVE/ADVANCEMENT REQUIRED: The objective of this	
develop, evaluate ad demonstrate the materials, techniques, proces	
equipment required for assembly by adhesive bonding of the constitution of large, space-erectable structures. 1. CURRENT STATE OF ART:	tuent
HAS BEEN CARRIE	D TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
See Page 4.	
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐	A, □ B, □ C/D
6 RATIONALE AND ANALYSIS:	
The requirement for large, space-erectable structures for future missions has been confirmed by the user community both within a NASA. For example, the SPART Study indicated the need of such to satisfy example, some of the NASA technology targets, such a observatories, industries and utilities. In addition, the Office Science (OSS) has included such structures in the new technology ments for the period 1985-2000 for missions involving deepspace infrared interferometry and long baseline interferometry. The will be on the order of 100 to 1000 meters in diameter or length order of dimensional stability and a long life expectancy. Fur Office of Applications (OA) has stated their need for light-wer scale arrays for power transmission. The present program encount development of adhesives and adhesive joining techniques to be fabrication of these large structures in space. The advantages adhesive joining over other joining methods are, (1) light weight sional stability, (3) compatibility with light weight non-metal metallic structural elements, (4) ease of fabrication and (5) mand equipment.	and without structures as large ice of Space gy require- e radiometry, se structures th with a high rther, the ight, large mpasses the used in the s offered by ght (2) dimen- llic and

TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 28
1. TECHNOLOGY REQUIREMENT(TITLE): Adhesive Bonding of Large PAGE 2 OF 4
Erectable Structures in Space
7. TECHNOLOGY OPTIONS:
8. TECHNICAL PROBLEMS:
9. POTENTIAL ALTERNATIVES:
For metallic, erectable structures - join by welding For metallic and non-metallic erectable structuresmechanical fastening.
For metalife and non-metalife electable structuresmechanical isstening.
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:
See Base A
See Page 4
EXPECTED UNPERTURBED LEVEL
11. RELATED TECHNOLOGY REQUIREMENTS;
Development of large, erectable, space structures for observatories, industries, utilities, deep-space radiometry, infrared interferometry, long baseline interferometry and arrays for power transmission.
bassaine interretometry and arrays for power transmission.

DEFINITION O	FΤ	EC	HNO	OLC	GY	RE	QU	IRE	ME	ΝT					N	Ю.	28		
1. TECHNOLOGY REQUIREMENT (TITLE): Adhesive Bonding of LargePAGE 3 OF 4 Erectable Structures In Space																			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80						86	87	88	89	90	91	1	
TECHNOLOGY 1. Material Devel. 2. Technique Devel. 3. Joint Evaluation 4. 5. APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4.																			
13. USAGE SCHEDULE:	l	<u> </u>	<u></u>	<u> </u>	L	L	L			L	<u> </u>	L	<u> </u>		L	L	·	L	
TECHNOLOGY NEED DATE																	r	то	ΑL
NUMBER OF LAUNCHES											Ì								
14 REFERENCES:																			

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OBSERVED AND REPORTED,
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, F.G., MATERIAL, COMPONENT, FIG.

. . .

- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY OF RIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OLI RATION OF MODEL,

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. $\frac{28}{}$

1. TECHNOLOGY REQUIREMENT (TITLE): Adhesive Bonding of

PAGE 4OF 4

Large, Erectable Structures in Space

Terrestrial Effort

The requirement for long life in the space environment will necessitate the development and evaluation of new adhesive formulations Low outgassing characteristics in the hard vacuum of space will be a requisite not only for the maintenance of structural integrity, but also to minimize the contamination of critical surfaces, such as sensors, mirrors, and thermal control surfaces. Other requirements will include resistance to space radiation and the ability to cure properly in vacuum. It is anticipated that premixing and freezing of the adhesive will be necessary to avoid the necessity of mixing the resin and catalyst in space for some application. Thawing of the adhesive and its introduction into the joints in a weightless environment will require the development of special equipment and tools. For other applications, prepreg film adhesives will be used.

Typical, specimen joints will be made and evaluated for strength characteristics, dimensional stability, and resistance to simulated space invironments to select the adhesives for evaluation in space.

Space Effort

Further evaluation of the life characteristics of the selected adhesives will be accomplished by exposure of typical joints to the space environment on LDFF. Since a six-month exposure is not considered of sufficient duration, it is recommended that the LDEF mission be extended to 3 years duration so that joint specimens could be returned at various intervals throughout this time span by the Shuttle for evaluation of Earth.

The joints will be returned in evacuated, sealed cannisters and evaluated for strength capability and dimensional changes in evacuated chambers to avoid any Earth atmospheric effects. Such tests will generate data which will provide for more meaningful extrapolations for longer time periods.

Actual space demonstration of the developed bonding techniques and equipment will be conducted in orbit outboard the pallet of the Spacelab by experimenters equipped with space suits. Typical joints will be made in this manner and returned to Earth under protection in cannisters and evaluated for strength characteristics as described previously.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 29
1. TECHNOLOGY REQUIREMENT (TITLE): Long Life Polymeric PAGE 1 OF 3 Protective Coatings for Space Applications
2. TECHNOLOGY CATEGORY: Structures & Spacecraft/Mechanical 3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop protective coatings of greater resistance to the space environment for use on solar cells, thermal tap
circuit boards, etc.
1. CURRENT STATE OF ART: Protective coatings are available with various
space compatibilities (outgassing, thermal, etc.) but are not consistant nor completely reliable. HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Polymer chemistry has produced several protective coating materials that have been used in space applications with success as far as is known (we need recovered mechanisms to check out their success). The epoxies, urethanes, silicones, etc. need experimentation in space to determine their long life usefulness.
p/L requirements based on: ☐ pre-a, ☐ a, ☒ b, ☐ c/
6. RATIONALE AND ANALYSIS:
 a) Long life protective coatings are required for protection of external and internal items. Long life space test results are not available and must be obtained.
b) LDEF type long duration platform.
c) Long life mission performance will definitely be improved or assurance of the integrity (as to life) of the coating will be determined.
d) Long duration space flight is necessary in order to bring protective coatings to level 10.
TO BE CARRIED TO LEVEL <u>1</u>

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 29
1. TECHNOLOGY REQUIREMENT(TITLE): Long life Polymeric	PAGE 2 OF 3
Protective Coatings for Space Applications	
7. TECHNOLOGY OPTIONS:	
To depend upon Engineering extrapolation of earth laboratory the longer life missions.	data to fulfill
	·
8. TECHNICAL PROBLEMS:	
Polymer chemistry's investigation into new products and metho of the material.	ods of synthesis
9. POTENTIAL ALTERNATIVES:	
None.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
To continue outgassing and contamination evaluation of present products and extrapolation of the data to space applications.	t commercial
	·
EXPECTED UNPERT	URBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS:	
	!

DEFINITION ()F 7	EC	HNO	OLC)GY	RE	QU	IRE	CMF	rn	`				N	Ю,	29)	
1. TECHNOLOGY REQUIREMENT (TITLE): Long Life Polymeric PAGE 3 OF 3 Protective Coatings for Space Applications																			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	7 8	79	80	81	82	83	81	35	86	87	88	89	90	91		
TECHNOLOGY 1. Analysis					1														
2. Development					-	•													
3. Testing																			
4. Documentation						_													
5.																			
APPLICATION																			
1. Design (Ph. C)							-												
2. Devl/Fab (Ph. D)							_	,											
3. Operations			;																
4.									_										
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE					79												Т	OT.	ΑL
NUMBER OF LAUNCHES			 				1			1								2	

14. REFERENCES:

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OINE LAD AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL,
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 8. COMPONENT OR BRIADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY,
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 1. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY PERADING OF AN OP SATIONAL MODEL.
 10. LIFETIME EXTENSION OF AN OLD BOOK OF MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 30
1 TECHNOLOGY REQUIREMENT (TITLE): Long Life Adhesives for PAGE 1 OF 3 Space Applications
2. TECHNOLOGY CATEGORY: Structures and Spacecraft/Mechanical 3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop improved long life adhesives for use in space-solar cells, thermal tapes, structural honeycomb.
1. CURRENT STATE OF ART: Today's adhesives do a good job with occasional
T/V failures. We do not know their 'space' durability as none have been
recovered. HAS BEEN CARRIED TO LEVEL 5. DESCRIPTION OF TECHNOLOGY
Polymer chemistry must develop adhesives that are 100% reliable after a long term space exposure (5-10 years) as S/C life times are in the 5-10 year range. Present day adhesive will fail occasionally in T/V testing or under ground assembly conditions. We do not know of their true space applicability as none have been recovered from space. The chemical-adhesive properties should be improved and long duration 'space' exposure is necessary.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☒ C D
6 RATIONALE AND ANALYSIS:
a) Present day technology is not 100% reliable. Better adhesives must be Jeveloped in order to assure us that our S/C missions will be 100% successful.
b) Long term exposure to 'space'LDEF
c) Long life times and more assurance of payload mission success will be the end product of this effort.
d) 10

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 30
1	TECHNOLOGY REQUIREMENT(TITLE): Long Life Adhesives for	PAGE 2 OF 3_
Spa	ace Applications.	
	TECHNOLOGY OPTIONS:	
	To continue as today with selection of adhesives being made as extrapolations from earth laboratory data.	Engineering
8.	TECHNICAL PROBLEMS:	
	Development of improved adhesives by polymer chemistry. It may possible to do so by rearrangement of the molecular structure.	y not be
9.	POTENTIAL ALTERNATIVES:	
	None.	
	none.	
10.	PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCE	MENT:
	Continued analysis of commercial data on new products plus outg contamination, and other laboratory test data.	assing,
	EXPECTED UNPERTU	RBED LEVEL 5
11	. RELATED TECHNOLOGY REQUIREMENTS:	

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 30 1. TECHNOLOGY REQUIREMENT (TITLE): Long Life Adhesives for PAGE 3 OF 3 Space Applications 12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 TECHNOLOGY 1. Analysis 2. Design Development 4. Testing 5. APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4. Documentation 13. USAGE SCHEDULE:

14. REFERENCES:

TECHNOLOGY NEED DATE
NUMBER OF LAUNCHES

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHI NOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, EIC.
- COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.

TOTAL

- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DURING FROM A MUCH LESSER OPERATIONAL MODLL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OPI "ATIONAL MODEL.

	DEFINITION OF TECHNOLOGY REQUIREMENT NO. 31
	CHNOLOGY REQUIREMENT (TITLE): High Temperature PAGE 1 OF 3 h Thermal Conductivity Polymeric Materials
	THNOLOGY CATEGORY: Structures and Spacecraft/Mechanical
	JECTIVE/ADVANCEMENT REQUIRED: To increase the thermal conductivity
	polymeric materials for use at high temperatures.
4. CUI	RRENT STATE OF ART: High thermal conductivity is controlled by filling
	etal powders. It is proposed that the thermal conductivity be improved by
rearra	ngement of the molecular structure or by HAS BEEN CARRIED TO LEVEL 3
improv 5. DE	ed organo-metallic compounds. SCRN-TION OF TECHNOLOGY
the	technology of polymer chemistry is involved as the means of improving desired property of the polymers. The technology of thermal/heat nsfer will be involved in testing and evaluation.
tra	nsier will be involved in testing and evaluation.
	P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☒ C/D
6. RA	TIONALE AND ANALYSIS:
a)	In some cases (planetary probes) high temperatures are encountered and good thermal control is very necessary.
ъ)	Long duration exposure facility with thermal control is required.
c)	Will be beneficial to planetary probes and others where high temperatures are involved.
d)	10
	TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 31
TECHNOLOGY REQUIREMENT(TITLE): High Temperature High Thermal Conductivity Polymeric Materials	_ PAGE 2 OF <u>3</u>
7. TECHNOLOGY OPTIONS:	
To continue to extrapolate laboratory data and to design other materials for thermal control.	methods/
8. TECHNICAL PROBLEMS:	
Polymer chemical structures- inherent thermal and physical pr polymers.	operties of
9. POTENTIAL ALTERNATIVES:	
None.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCE	EMENT:
Continue to evaluate commercial products and to extrapolate _	ratory data.
EXPECTED UNPERTU	JRBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS:	
	,
	i

DEFINITION OF TECHNOLOGY REQUIREMENT 31 NO. 1. TECHNOLOGY REQUIREMENT (TITLE): High Temperature High PAGE 3 OF <u>3</u> Thermal Conductivity Polymeric Materials 12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 TECHNOLOGY 1. Analysis 2. Design/development 3. Testing 4. Documentation 5. **APPLICATION** 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations Documentation 13. USAGE SCHEDULE: TECHNOLOGY NEED DATE TOTAL 1 NUMBER OF LAUNCHES

14 REFERENCES:

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, FIC.
- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- NEW CAPABILITY DURING FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OIL RATION VI. MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 32
1. TECHNOLOGY REQUIREMENT (TITLE): Improved Electrical PAGE 1 OF 3
Conductivity Polymeric Materials
2. TECHNOLOGY CATEGORY: Structures and Spacecraft/Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: To significantly improve the electri-
cal conductivity of polymeric materials.
4. CURRENT STATE OF ART: Electrical conductivity is improved in polymers
today by the addition of metals (powders, fibers) to the polymeric materials.
This should be investigated by rearrangement of HAS BEEN CARRIED TO LEVEL
the chemical structure if possible. 5. DESCRIPTION OF TECHNOLOGY
Polymer chemistry must study and investigate the problem to determine how
to increase the electrical conductivity of the material, by rearrangement of the chemical structure or some other such manner.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☒ C/D
6. RATIONALE AND ANALYSIS:
Requires a long duration exposure facility to fully evaluate the end
product. This product is needed to control the space change created in-flight spacecraft and other orbiting devices.
TO BE GARRIED TO LEVEL 10
TO BE CARRIED TO LEVEL 10

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 32
TECHNOLOGY REQUIREMENT(TITLE): Improved Electrical Conductivity Polymeric Materials.	PAGE 2 OF <u>3</u>
7. TECHNOLOGY OPTIONS:	
To continue to develop 'fixes' for each condition as they arise Engineering Judgment and earth laboratory data.	by using
8. TECHNICAL PROBLEMS:	
Chemistry of polymersmay not be able to rearrange the chemica to achieve the objective.	al structure
9. POTENTIAL ALTERNATIVES:	
Use present day materials and rely on 'fixes'.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCED To look at the problem on a very low priority basis, maybe never	
EXPECTED UNPERTUR	BED LEVEL 3
11. RELATED TECHNOLOGY REQUIREMENTS:	
TE TOTALISM IN INOLOGI REQUIREMENTS:	

DEFINITION OF TECHNOLOGY REQUIREMENT											N	10.	32						
1. TECENOLOGY REQUIREMENT (TITLE): Improved Electrical Conductivity Polymeric Materials											1	PAG	E 3	OF	3	_			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Analysis 2. Design and Devel. 3. Testing 4. Documentation																			
5,																			
APPLICATION 1. Design (Ph C) 2. Devl/Fab (Ph. D) 3. Operations 4. Documentation												-							
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE							_	_	_						_	_	1	TOT	ΆL
NUMBER OF LAUNCHES									1			1		<u> </u>					2

14 REFERENCES:

- 1. IMSIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXTERIMENT OR MATHEMATICAL MODEL.
- 4. PERHINEN' FUNCTION OR CHARACTERISTIC DEMONSTRATED, F.G., MATERIAL, COMPONENT, FIG.
- COMPONENT OR BREADBOARD LESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT
- 8. NEW CAPABILITY DURING DEFROM A MUCH LESSER OPERATIONAL MODLL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OLI BATION AL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 33
1. TECHNOLOGY REQUIREMENT (TITLE): Retention of Liquid PAGE 1 OF 3
Lubricants by Passive Means Under Passive Conditions
2. TECHNOLOGY CATEGORY: Structures & Spacecraft/Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: Evaluation of Barrier Films and
Labyrinth Seals to reduce/prevent the loss of liquid lubricants from creep/
evaporation.
1. CURRENT STATE OF ART: Art carried through earth laboratory evaluation
and has been applied in isolated cases to Flight Mechanisms. Have not been able
to determine value of the film/seals as actual fHAS BEEN CARRIED TO LEVEL 2
as flight Ruetheniams are not recoverable.
The technology of retention of small quantities of a liquid lubricant "in place" during the operation of the s/c mechanism has advanced to the state that barrier films and labyrinth seals are used with full ground laboratory testing and with positive results. The films and seals must be evaluated in a long duration space flight with recoverable components in order to completely confirm the benefits of their use.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☒ C/D
6. RATIONALE AND ANALYSIS:
a) In the past, Lubrication Technologists have used more than necessary quantities of lubricants to do the job. Now, the same people are using smaller quantities/just enough to do the job and we cannot afford to lose any of the lubricant. Therefore, low surface tension barrier films and labyrinth seals are used to prevent/reduce the loss of the lube by creep/evaporation. Long duration space flights are needed to confirm our decisions.

- b) Long duration space flights are required to complete evaluation of the film/seals. LDEF.
- c) All missions using liquid lubricants will be benefited by this evaluation. Those with moving mechanisms (failures) and sensitive instruments (degradation of output) are especially to be benefited.
- d) At present, the technique is being applied to some selected flight instruments. We need recovered mechanisms to definitely prove out the use of the films/seals.

TO BE CARRIED TO LEVEL 10

DEFINITION OF TECHNOLOGY REQUIREMENT	NO.33
1. TECHNOLOGY REQUIREMENT(TITLE): Retention of Liquid	PAGE 2 OF
Lubricants by Passive Means Under Passive Conditions.	
7. TECHNOLOGY OPTIONS:	
Use best effort. Engineering Judgments to do the selection of methods. But the two concerns would still be creep/evaporation tion of adjacent sensitive instruments.	
8. TECHNICAL PROBLEMS:	
None.	
9. POTENTIAL ALTERNATIVES:	
Best Engineering Judgments.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	EMENT:
It is now planned to use or not use the barrier films/labyring specified by the Lubrication Technologists.	th seals as
EXPECTED UNPERT	URBED LEVEL <u>5</u>
11. RELATED TECHNOLOGY REQUIREMENTS:	
Surface chemistry.	

DEFINITION OF TECHNOLOGY REQUIREMENT											N	Ю,	33						
1. TECHNOLOGY REQUIREMENT (TITLE): Retention of Liquid Lubricants by Passive Means Under Passive Conditions.											12	PAG	Е 3	OF	_ 3				
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	81	85	86	87	88	89	90	91		
TECHNOLOGY 1. Flight 2. Post flight analysis and documentation 3. 4. 5.																			
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 1. Post flight anal.& documentation																			
13. USAGE SCHEDULE:					,	·	_	T	+	+	,	т	+	1	_	_		T	
TECHNOLOGY NEED DATE			1											$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		1_	1	rot	A L
NUMBER OF LAUNCHES						1			1										2
11 REFERENCES																			

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODIT.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, F.G. MATERIAL COMPONENT, Free
- 5. COMPONENT OR BREADBOARD LESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT
- 8. NEW CAPABILITY DIRIVED FROM A MUCH LESSER. OPERATIONAL MODEL
- 9. RELIABILITY EPORADING OF AN OPERATIONAL MODEL
- 20. LIFETIME EXTENSION OF AN OLI BATION S', MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 34
1. TECHNOLOGY REQUIREMENT (TITLE): Retention of Liquid PAGE 1 OF 3
Lubricants "in Place" Under Dynamic Conditions.
2. TECHNOLOGY CATEGORY: Structure & Spacecraft/Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: Evaluation of barrier films/labyrinth
seals to reduce/prevent the loss of liquid lubricants by creep/evaporation in
the space environment in a dynamic condition.
1. CURRENT STATE OF ART: Barrier films/seals are used to date in selected
cases to prevent/reduce loss of lubricant by creep/evaporation but we have not
been able to fully evaluate their usefulness. HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
The technology has been carried through the earth laboratory evaluation stage and into its selected use on a few flight mechanisms. Full testing
will not be completed until long duration space flight and test mechanisms are recovered and examined on earth by the Experimenter.
are recovered and examined on earth by the Experimenter.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☒ C/D
6 RATIONALE AND ANALYSIS:
 a) Lubrication Technologists in the past have used more lubricant than necessary as that was the state of the art. Today, the same people
are recommending the swillest quantity possible in order to do the
job. As there is no excess and the operational conditions will be dynamic, we must be able to retain all of the lubricant 'in place'.
b) Long Duration Exposure Facility
c) All missions using mechanical components will benefit by these efforts as long life and non-contamination will be more assured.
d) Must be space flight proven. To date this has not been done unquestion- ably.
• • • • • • • • • • • • • • • • • • •
TO BE CARRIED TO LEVEL 10

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 34
1. TECHNOLOGY REQUIREMENT(TITLE): Retention of Liquid	PAGE 2 OF <u>3</u>
Lubricants 'In Place' Under Dynamic Conditions.	
7. TECHNOLOGY OPTIONS:	
Use the present methods as determined by best Engineering Jud to justify mechanical failure or optical/sensor contamination mission basis.	
8. TECHNICAL PROBLEMS:	
None.	
9. POTENTIAL ALTERNATIVES:	
Best Engineering Judgment basis or ground evaluation.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
It is now planned to use/or not use the film/seal technique a the Lubrication Technologist on a best judgment basis.	s specified by
EXPECTED UNPERT	URBED LEVEL
11. RELATED TECHNOLOGY REQUIREMENTS:	
Surface chemistry, mechanical design.	
	†

DEFINITION OF TECHNOLOGY REQUIREMENT									·	1	W.	34							
1. TECHNOLOGY REQUIREMENT (TITLE): Retention of Liquid Lubricants 'In Place' Under Dynamic Conditions.												l	'AG	E 3	OI	3			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	81	85	86	87	88	89	90	91		
TECHNOLOGY 1. Flight 2. Post flight evaluation 3. 4. 5.	a																		
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4. Post documentation																			
13. USAGE SCHEDULE:	1	_	_	1		T	Τ-	T -	1	1	Τ-	т-	_	T	T	Τ-	1	Ţ	
TECHNOLOGY NEED DATE	igspace	F	-	_	_		<u> </u>	_	_	_	↓_	<u> </u>	↓_	_	↓_	1	1 	TOT	AL
NUMBER OF LAUNCHES		_				1	<u>L</u>	1											?

14. REFERENCES:

- 1. BASIC PHESOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PRENOMENA.
- 3. THEOGY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, F.G., MATERIAL, COMPONENT, 510.
- COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODY LITESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT
- NEW CAPABILITY DURING DEROM A MUCH LESSER
 OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AS OPERATIONAL MODEL,
- 10. LIFETIME EXTENSION OF AN OLI BATION OF MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 35
1. TECHNOLOGY REQUIREMENT (TITLE): Effects of Space PAGE 1 OF 3
Environment on the Properties of Specific Polymeric Materials
2. TECHNOLOGY CATEGORY: Structures and Spacecraft/Mechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: To expose specific polymeric materials
to the space environment for comparison to earth laboratory data; to expose
specific polymers for a long time (3-5 years) in space.
+. CURRENT STATE OF ART: Laboratory data has been collected and compiled for
use by Designers and Engineers but no space flight data is specifically known. HAS BEEN CARRIED TO LEVEL 5
5. DESCRIPTION OF TECHNOLOGY
The technology involved is polymer chemistry and outgassing, contamination
and physical properties of polymeric materials.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☒ C/D
6 RATIONALE AND AN LYSIS:
a) Need long deration exposure data to compare with out earth laboratory data.
b) Long Duration (?-5 years) Exposure Facility-LDEF
c) Improved materials selection for many missions and especially reduction/ prevention of loss of sensor data quality by contamination from outgassed products.
d) 10
and at the same at
REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
OKIGINATI CUCIA TO COM
TO BE CARRIED TO LEVEL 10

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 35
1. TECHNOLOGY REQUIREMENT(TITLE): Effects of the Space	PAGE 2 OF 3
Environment on the Properties of Specific Polymeric Materials	
7. TECHNOLOGY OPTIONS:	
To continue to select polymeric materials for space flight a laboratory data only.	using earth
3. TECHNICAL PROBLEMS:	
None.	
9. POTENTIAL ALTERNATIVES:	
None.	
	A
10. PLANNED PROGRAMS OF UNPERTURBED TECHNOLOGY ADVAN	ICEMENT:
To continue to evaluate new polymeric materials and select promising ones for space use without data on their reaction space environment.	
EXPECTED UNPER	TURBED LEVEL 5
11. RELATED TECHNOLOGY REQUIREMENTS:	

DEFINITION OF TECHNOLOGY REQUIREMENT									NO. 35											
1. TECHNOLOGY REQUIREMENT (TITLE): Effects of the Space Environment on the Properties of Specific Polymeric Materials							PAGE 3 OF <u>3</u>													
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																				
	SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	8.1	85	86	87	88	89	90	91		
1. 2.	HNOLOGY																			
3. 4. 5.																				
	LICATION Design (Ph. C) Devl/Fab (Ph. D) Operations Documentation																			
13.	18. USAGE SCHEDULE:																			
	HNOLOGY NEED DATE MBER OF LAUNCHES				1.	1		1										ľ	OT.	

14. REFERENCES;

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHI NOMENA.
- 3. THEORY TESTED BY PHYSICAL ENPERIMENT OR MATHEMATICAL MODUL.
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, FIC.
- 5. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DURIND FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OFFIRATION CL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 36
1 TECHNOLOGY REQUIREMENT (TITLE): Space Repair of PAGE 1 OF 4 Polymers in Electronic Assemblies
2. TECHNOLOGY CATEGORY: Instrument Electronics
3. OBJECTIVE/ADVANCEMENT REQUIRED: The objective of this program is to develop and demonstrate the materials, methods, and equipment appropriate for
the application of conformal coatings and for potting to repair electronic assemblies in the space environment. 4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
See Page 4.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D
6 RATIONALE AND ANALYSIS:
The conformal coating and potting of electronic assemblies may be required in space as repair procedures. These will have to be performed in an environment which is not necessarily compatible with presently available materials and procedures developed for Earth operations. Gravity will not be present to assist in the filling of all the voids. Volatile components of the polymers can readily outgass and result in deleterious changes in composition and resulting properties.
TO BE CARRIED TO LEVEL 7

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 36
1. T ECHNOLOGY REQUIREMENT(TITLE): Space Repair of Polymers in Electronic Assemblies	PAGE 2 OF <u>4</u>
7. TECHNOLOGY OPTIONS:	
8. TECHNICAL PROBLEMS:	
9. POTENTIAL ALTERNATIVES:	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCE	EMENT:
See Page 4.	
See rage 4.	
EXPECTED UNPERTU	RBED LEVEL
11. RELATED TECHNOLOGY REQUIREMENTS:	

NO. 36 DEFINITION OF TECHNOLOGY REQUIREMENT 1. TECHNOLOGY REQUIREMENT (TITLE): Space Repair of Polymers PAGE 3 OF 4 in Electronic Assemblies TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR SCHEDULE ITEM 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 TECHNOLOGY 1. Material Development 2. Technique Develop. 3. Test & Evaluation 4. 5. APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 1. Past Flight Analysis 13. USAGE SCHEDULE: TOTAL TECHNOLOGY NEED DATE NUMBER OF LAUNCHES 14. REFERENCES:

- 1. IMSIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHI NOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL.
- PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, F.G., MATERIAL, COMPONENT, FIG.
- COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DURING DEFROM A MUCH LESSER OPERATIONAL MODLL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OLI RATION G. MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. 36

1. TECHNOLOGY REQUIREMENT (TITLE): Space Repair of Polymerspage 4 OF 4 in Electronic Assemblies

Current, space-approved conformal coating and potting formulations will be subjected to long-term outgassing tests to establish the quantity of volatile components. Selected materials will be modified to reduce the amount of outgassing and evaluated in comparison with the standard formulation for processing problems and adequacy for the intended applications. Methods of vacuum degassing in a controlled manner and of packaging the degassed materials will be studied and evaluated. Compositon changes and characteristics affecting the application of the resins to typical electronic assemblies will be investigated. Techniques will be devised for applying the polymens to typical worst case hardware configurations and evaluated. Any new or modified polymers developed in this program will be tested for requisite properties, such as dielectric strength.

The repair techniques developed on Earth will be evaluated in the actual space environment on the pallet of the Spacelab during an orbital mission by Spacelab crew members in the EVA mode.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 37
1. TECHNOLOGY REQUIREMENT (TITLE): Basic Studies of the PAGE 1 OF 1 Relation between Molecular Structure and Mechanical Behavior of Polymers
2. TECHNOLOGY CATEGORY: Basic Materials Research
3. OBJECTIVE/ADVANCEMENT REQUIRED: To generate an understanding that will permit design of polymers for specific mechanical applications.
4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Multidisciplinary studies in polymer chemistry and mechanical deformation to elucidate the relationship between the detailed molecular structure of a polymer molecule and the mechanical behavior of the polymer
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D
6 RATIONALE AND ANALYSIS:
It is now possible for polymer chemists to synthesize a series of molecules with regularly varying structures. These series can be used to make polymers whose variation in mechanical properties can be directly correlated with the molecular structures. This approach will eventually lead to guidelines for polymer synthesis for specific application as structural materials as well as for the matrix component of composites. Current research is in the beginning stages. It should be encouraged and augmented.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 38
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1
Basic Studies of Polymer Matrix Composite Structure Behavior
2. TECHNOLOGY CATEGORY: Basic Materials Research
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop fundamental understanding
on the atomic level of matrix composite structure and behavior in order to
provide guidance for applications and the synthesis of new materials.
1. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Studies such as the following:
 Study of the relation between graphite fiber morphology and the mechanical behavior of the fibers and of related composites.
2. The chemistry of polymers for composite applications.
P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/D 6. RATIONALE AND ANALYSIS:
TATIONALE AND ANALYSIS:
At present temperature limitations and environmental instabilities are problems whose elimination would increase the breadth of application of polymer matrix composites. In addition costs could be reduced without sacrifice of properties if new fiber materials were developed. The latter developments can be made more efficiently if a greater basic understanding existed of the mode of operation of the presently successful graphite fiber—the relationship between its structure, composition, manufacturing variables and mechanical properties. New polymer matrix materials will result if there is a contamination and expansion of the present research on the chemistry of polymers designed for this specific purpose.
REPRODUCIBILITY OF ORIGINAL PAGE IS POOR
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 39
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1 Basic Studies in Electrochemistry
2. TECHNOLOGY CATEGORY: Basic Materials Research
3. OBJECTIVE/ADVANCEMENT REQUIRED: To obtain fundamental understanding
in areas of electrochemistry and physical chemistry that pertain to the
development of better batteries.
4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Studies such as
1. Polymeric structure for battery separators.
2. Electrochemistry of high concentration electrolyte systems.
3. Electrode reactions and electrodepositon morphology.
· · · · · · · · · · · · · · · · · · ·
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D
6. RATIONALE AND ANALYSIS:
Electrochemical systems in the form of batteries will always be important components of space systems. Greater efficiency in terms of specific weight and long lifetime will be constant demands. Historically, battery development has occurred with a minimum of basic understanding of the details of the electrochemical processes involved. Current research has shown that substantial benefits can be reaped from basic studies of as widely varied problems as the mechanism of operation of battery separators and the morphology of zine deposition and its dependence on the charging cycle. Basic Research in the electrochemistry area should be supported at greater than the present level.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 40
1. TECHNOLOGY REQUIREMENT (TITLE):P	AGE 1 OF <u>1</u>
Physics and Chemistry of Organic Superconductors	
2. TECHNOLOGY CATEGORY: Basic Materials Research	
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop concepts for tive materials for application to higher temperatures then those of	
with metals.	
4. CURRENT STATE OF ART:	
HAS BEEN CARRIEI	TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
Theoretical solid state studies and research in synthetic organistry.	nic
	1
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A	□ в. □ с/р
6 RATIONALE AND ANALYSIS:	
The state of the s	
Super conductivity at temperatures even as high as room temperal promise of untold benefits to mankind. It has been hypothesize mechanism of superconductivity in metals can be duplicated in o molecules of appropriate structure. At present detailed molecular structures have been proposed and attempts are being made to sy them. The NASA support of this research should be augmented.	d that the rganic lar
TO BE CARRIED	TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 41
TECHNOLOGY REQUIREMENT (TITLE): Low Thermal PAGE 1 OF 1
Ixpansion Composite Materials for Space Structures
2. TECHNOLOGY CATEGORY: Structural and Spacecraft/Hechanical
3. OBJECTIVE/ADVANCEMENT REQUIRED: Reduced thermal expansion
coefficient materials to improve dimensional stability of large
space antennas subjected to thermal cycles.
4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Dimensional control of large space structures subjected to
thermal cycles from varying exposure must be controlled to .lcm. Active control of stability will be used to augment
the materials limit of stability.
i
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C D
6. RATIONALE AND ANALYSIS:
Monolithic materials for dimensional stability have thermal
expansion coefficient of about 1 cm/cm/°K. Graphite fiber composites can achieve coefficients to about 0.1cm/cm/°K.
Lower thermal expansion fibers of graphite and perhaps
negative expansion ceramic fibers are possible. Combinations of these fibers into a composite structural way with the
proper fiber ply orientation may reduce thermal exparsion
control levels to coefficient value. 0.01cm/cm/°K.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 42
TECHNOLOGY REQUIREMENT (TITLE): Standardization of PAGE 1 OF $\frac{1}{2}$ Composite Materials Processing and Testing
2 TFCHNOLOGY CATEGORY:
S. OBJECTIVE/ADVANCEMENT REQUIRED: To reduce the rea and apparent scatter in properties of composite materials by review and standardization of
processing, inspection and testing methods.
1. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Considerable scatter in separate material properties results from lack of standardization of processing. Scatter in measured properties obtained for a given lot of material tested at different laboratories can be traced to variation in test techniques.
P L REQUIREMENTS BASED ON: PRE-A, A, B, C D
6 RATIONALE AND ANALYS ₁₅ :
Reduction of scatter in composite material properties would increase design allowables stress levels that would decrease structural weights. Reduced volumes of composite also would decrease the cost of the component and increase the portions of the space structure that can be considered for composite materials.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 43
1 TECHNOLOGY REQUIREMENT (TITLE): Effect of Long Duration PAGE 1 OF 1
Space Exposure on Properties of Composite Materials
2. TECHNOLOGY CATEGORY:
3. BJECTIVE/ADVANCEMENT REQUIRED: Composite materials are being and
will be used more extensively in space structures. Long term reliability and
the effect of space environment must be determined to design for safe long duration applications.
4. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Data will be obtained on the effects of space environmental for long times. Metal matrix and polymer matrix components will be exposed in space for times up to 10 years in a pa. ve satellite such as LDEF. Composite panels including epoxy, polyimide and aluminum matrix with a range of fiber contents from 30 to 70 volume percent, and varying fiber ply orientations will be exposed. Varying thermal cycles may also be include:
Panels in the exposure facility should be removed at periodic intervals, returned to earth and evaluated. A modular exchange mechanism similar to that proposed by Goddard might be adapted to permit individual panel exchanged in orbit. The opportunity to add panels provides the option of introducing improved composites developed as part of the continuing composite development program. One input to that improvement is the data on space environmental effects.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C \(^1\)D
6 RATIONALE AND ANALYSIS:
The weight of space structures such as antennas and vehicles may be reduced by up to 50 percent by using composite materials instead of c nventional materials. Further reliability requirements for space structures can be much more stringent than for earth applications. Long service life is also required. The space environment can be sufficiently antayonistic to cause degradation. Polymer matrix composites can be embrittled by radiation outgassed by the vacuum and aluminum matrix composites may be degraded by thermal cycling. Data are needed for space application of materials for the little known space environment, the need for data for composites, a newer material, is greater.
TO BE CARRIED TO LEVEL

TO THE PROPERTY OF THE PROPERTY OF THE PARTY
DEFINITION OF TECHNOLOGY REQUIREMENT NO. 44
1. TECHNOLOGY REQUIREMENT (TITLE): Characterization of PAGE 1 OF 4 Damage Mechanisms Associated with Failure and Degradation of Composite Materials
2. TECHNOLOGY CATEGORY: (9) Structural and spacecraft mechanical 3. OBJECTIVE/ADVANCEMENT REQUIRED: To identify mechanisms associated
with composite material degradation as related to material configuration and
dimensions, and service environment, including loading and chemical (Coct'd)
1. CURRENT STATE OF ART: Constant amplitude cyclic loading time to failure
with no chemical environment input. General trends with environmental variables being identified. HAS BEEN CARRIED TO LEVEL 1
It is generally accepted that the next major improvement in utilizing materials at significantly higher strength levels will be accomplished through more widespread use of advanced filamentary composite materials. Composite materials development has reached the point where reliable, predictable, reproduceable resin matrix material is available to the extent that standardization of certain systems is near realization. Metal matrix composite material has reached the state of development where high quality Boron Aluminum and Bor-Sic Aluminum can be produced to individual specification. The major deficiency in technology development of the entire class of advanced filamentary composite materials lies in the understanding of damage mechanisms which can cause degradation of failure in service. Presently, the utilization of these materials appears vital to almost any (Cont'd)
P/L REQUIREMENTS BASED ON: ▼ PRE-A, ☐ A, ☐ B, ☐ C/D
6. RATIONALE AND ANALYSIS:
Laboratory test programs have progressed sufficiently to demonstrate that classical damage mechanisms of crack initiation and growth, crack stability, and environmental reaction and interaction as developed and applied to structural metals and other isotropic materials are not directly applicable to composite materials. In addition, the unique opportunity to tailor composite materials with respect to reinforcing direction will require characterization of many combinations of ply lay-ups which may result in major differences in damage modes. The process of delamination and load transfer by alternate paths needs additional experimental work in order to develop models for predicting cumulative damage and failure times. Extensive experimental programs to investigate environmental effects of temperature, moisture, radiation, erosion, gaseous reaction, and their synergism with the loading environment are required. Effects of space radiation and hard vacuum on damage produced by cyclic loading are needed in order to develop predictive performance capability for very long duration missions. Experimental programs should identify variables which have a significant effect on the damage mechanism and which should be included as inputs for developing analytical models to predict performance.

cV

TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 44	
1. TECHNOLOGY REQUIREMENT(TITLE): Characterization of PAGE 2 OF	4
Damage Mechanisms Associated with Failure and Degradation of Composite Materia:	<u>ls</u>
7. TECHNOLOGY OPTIONS:	
	l
8. TECHNICAL PROBLEMS:	
Definition of environment interaction required real time testing and associated long lead time for providing structural reliability for	
very long life components.	
9. POTENTIAL ALTERNATIVES:	
None.	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANCEMENT:	
EXPECTED UNPERTURBED LEVEL	ւ
11. RELATED TECHNOLOGY REQUIREMENTS:	
New composite materials development.	
New composite materials development.	

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 44																			
1. TECHNOLOGY REQUIREMENT (TITLE): Characterization of PAGE 3 OF 4 Damage Mechanisms Associated with Failure and Degradation of Composite Materials																			
12. TECHNOLOGY REQUIREMENTS SCHEDULE: CALENDAR YEAR																			
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Analysis and design of experiment. 2. Specimen preparation																			
 Exposure and Testing Analysis design and model. Development of long life prediction 																			
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D) 3. Operations 4.																			
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATI	:									_	_	-	-	_	\vdash	-	7	OT	AL
NUMBER OF LAUNCHES			<u> </u>	2	2	2	2	2	<u> </u>		<u></u>		<u> </u>				<u> </u>		

14. REFERENCES:

- 1. BASIC PHENOMENA OBSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL,
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 8. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DURIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
- 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT

NO. _44

1. TECHNOLOGY REQUIREMENT (TITLE): Characterization of PAGE 4 OF 4

Damage Mechanisms Associated with Failure and Degradation of Composite Materials

(Continuations)

- 3. effects and their interaction. To develop damage theory models and analytical techniques to predict materials behavior in service.
- 5. space mission where large, lightweight structure is required. These include large microwave reflectors, antennae, solar farms, space telescopes, and space stations.

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 45
1. TECHNOLOGY REQUIREMENT (TITLE): Manufacture of Composite PAGE 1 OF 1 Materials In Space
2. TECHNOLOGY CATEGORY:
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop materials processes and
equipment to fabricate very long structural members in space. These section
structural members so produced can be assembled into light weight structures in
space. 1. CURRENT STATE OF ART:
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Polymer matrix prepreg or aluminum ingot and form fiber spools can be transported in a much smaller volume as bulk material then an array of composite structural beams or tubes. Processing equipment and techniques suitable for space fabrication will be developed and evaluated in research on earth. These will be adaptions of existing technology modified as necessary. It may be found that improved composite materials are required at a future date; consequently, fabrication techniques should be evaluated in a space environment to increase confidence.
P/L REQUIREMENTS BASED ON: ☐ PRE-A, ☐ A, ☐ B, ☐ C/D
6. RATIONALE AND ANALYSIS:
Antennae structures from 100 to 1000 meters have been indicated as possible for space application. Large structures of this size have been indicated by the structures group to be larger than optimum for earth manufacture. Assembly of earth fabricated scructural elements is possible; however it may be advantageous to orbit raw materials and fabricate the structural elements in space. Partly to reduce the volume orbited but also to make long thin elements not easily produced with earth gravitational effects.
TO DE CADRIED TO I EVEI
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>46</u>
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>
Materials and Processes for Assembly of Structures in Space	
2. TECHNOLOGY CATEGORY: Structural and Spacecraft/Mechanica	1
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop joining proce	dures, (i.e.
welding, brazing, bonding) for assembling modular composite str	uctural elements
(i.e. tubes and beams) to make light weight structures such as large as 1000 meters.	antennas as
4. CURRENT STATE OF ART:	
HAC DEEN CARD	TED TO LEVEL
HAS BEEN CARR	TED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
Joining methods will be adapted for space use, demonstrated earth and at a later date considered for space demonstration	
P/L REQUIREMENTS BASED ON: 🔀 PRE-A,	$A, \square B, \square C/D$
6. RATIONALE AND ANALYSIS:	
It has been proposed that structures above a certain size, f antennas larger than 30m in diameter, should be assembled in structured elements brought up to space. Structures larger meters may benefit from assembly in space of structured elem manufactured in space from bulk raw materials.	space from than 100
	,
TO BE CARRI	ED TO LEVEL

	DEFINITION OF TECHNOLOGY REQUIREMENT	NO. <u>47</u>
1.	TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>
	Basic Solid State Physics of Metal Matrix Composites	
2.	TECHNOLOGY CATEGORY: Basic Materials Research	
3.	OBJECTIVE/ADVANCEMENT REQUIRED: To develop fundament	al understanding
o <u>f</u>	the strucuture of the composite at the atomic level in order	to provide
gui	dance for their development manufacture and application.	
4.	CURRENT STATE OF ART:	
	HAS BEEN CAR	RIED TO LEVEL
5.	DESCRIPTION OF TECHNOLOGY	
	Studies such as the following will be made:	
	 Internal friction and elasticity of boron fibers Internal stress distributions in fibers produced by che deposition and the effects of stress distribution on me properties. 	
	 Physics and chemistry of fiber-matrix interfaces. Thermal fatigue in composite structures. 	
	P/L REQUIREMENTS BASED ON: PRE-A,	□ A, □ B, □ C/D
6.	RATIONALE AND ANALYSIS:	
	The development of metal matrix composites has been based extechnology or by the pursuit of fruitful approaches developmenthods. The state of the art is now at a point where the basic understanding can provide the most profitable approach materials. Examples are: (a) a better understanding of the fiber-matrix bond and its contribution to tensile strength strength, (b) an understanding of the stress distribution is its effect on the mechanical behavior, (c) the role of the anelasticity of boron on its mechanical properties and on for composite. New basic problems will arise as the spectrum of the stress of of t	ed by cut and try development of h to improved nature of the and impact n the fiber and unusual abrication of the
	TO BE CARE	RIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT NO. 48
1. TECHNOLOGY REQUIREMENT (TITLE): PAGE 1 OF 1
Studies of Creep and Fracture Mechanisms in Composites
2. TECHNOLOGY CATEGORY: Basic Materials Research
3. OBJECTIVE/ADVANCEMENT REQUIRED: To develop an understanding of the
mechanisms of energy absorption and fracture in composite structures in order
to guide development and application.
4. CURRENT STATE OF ART:
HAS DEEN CARRIED TO LEVEL
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Studies in fractography, dislocation interactions and multiplication, theory of cracking, fiber-matrix interactions during straining, internal friction studies.
TITCTION SCUATES.
P/L REQUIREMENTS BASED ON: PRE-A, A, B, C/
6. RATIONALE AND ANALYSIS:
The deformation and fracture of a composite material are processes of a higher order of complexity than those manifested in homogeneous materials. It is necessary to increase the understanding of the modes by which load is transformed from matrix to the fiber, the behavior of the fiber-matrix bond during straining the effect of surface flaws on crack initiation, the role played by a grown-in stress distribution in the fiber, and other questions whose elucidacion will lead to better materials. Basic research in these areas is minimal or non-existent at present.
TO BE CARRIED TO LEVEL

SPACE MATERIALS TECHNOLOGY REQUIREMENTS Opportunity Driven

DEFINITION OF TECHNOLOGY REQUIREMENT	NO49
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 OF <u>1</u>
Development of Directionally Solidified Eutectic Compounds in	Space
2. TECHNOLOGY CATEGORY:	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop new materials	with a
continuous fibrous phase, that is, fewer defects in the eutecti	c structure, by
solidification in low gravity.	
L. CURRENT STATE OF ART:	
HAS BEEN CARR	IED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
]
Directionally solidified eutectics currently in development increasing uniaxial strength in aircraft turbine blades and	
are limited. The rod-like reinforcing phase is not continuo	us but has
defects due to disturbances from convection while solidifyin	g.
P/L REQUIREMENTS BASED ON: PRE-A,] A, 🗌 B, 🔲 C/D
6. RATIONALE AND ANALYSIS:	
Metallic superalloy (e.g., nickel-columbium) eutectic compourused for high strength jet engine turbine blades or optical compounds can be used for laser windows. The reduced convect molten material, and the quiescient conditions of spacecraft considered to be beneficial to the achievement of this object believed that a more nearly perfect structure could be produgravity. Economic studies indicate that this work could sav of fuel and money in the aircraft industry.	slits or glassy tion of the in orbit are tive. It is ced in low
TO BE CARRI	IED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO	50
1. TECHNOLOGY REQUIREMENT (TITLE):	PAGE 1 O	F 2
Containerless Casting and Shaping of Reactive Metals in Space		
2. TECHNOLOGY CATEGORY:	_	
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop electromagnetic,		
hydrodynamic and acoustic levitation and control equipment, aided		
to contain and to shape reactive metals and ceramics without molds other containers. 4. CURRENT STATE OF ART. Metals and ceramics react with the mo		
or shaping container. Silicon single crystals are sliced from a r		i
HAS BEEN CARRIE		
5. DESCRIPTION OF TECHNOLOGY		
Some prototype of apparata for levitating molten material hav and much additional effort is required for instrumentation of demonstration flight equipment including storage, levitating, cooling, capturing and final storage for return of a simple sp the material is handled successfully, laboratory studies of the inchemical purity and metallurgical micro-structure are requiadvanced instrumentation for shaping molten material other that during levitation will be required in development and in flight demonstrations. Only then can metallurgists have the tools to and try new solidification techniques using zero gravity not one eliminating containers but for controlling structure.	the initi melting, here. On e differe red. Mor n spheres t experim do resea	al nce nces e
P/L REQUIREMENTS BASED ON: PRE-A, A	□ в, □] C/D
6. RATIONALE AND ANALYSIS:		
Many special metal requirements are not being filled currently metals and ceramics react with the mold, crucible or shaping control the production of ribbon "extruded" silicon single crystal in could be cut out like cookies rather than sliced from a rod limportation would be a major advancement to electronics if the flat surfact undisturbed. Tungsten x-ray targets and filaments need higher longer life and safety as do thermionic devices for energy procontrol. Most of these are small and of high unit value. Con handling of the product by levitation in low gravity with elector acoustic fields would eliminate chemical reactions with con	ontainer. which waf ke salami e were purity f duction a trol and tro-magne	or nd
TO BE CARRIED	TO LEVI	:1.

		DEFINITION OF TECHNOLOGY REQUIREMENT	NO50
1.		CHNOLOGY REQUIREMENT (TITLE): tainerless Casting and Shaping of Reactive Metals in Space	PAGE 2 OF 2
	(Cu	ntinued)	
	4.	salami and the flat surface is disturbed. Tungsten x-ray filaments need higher purity for longer life and safety as devices for energy production and control.	targets and do thermionic

DEFINITION OF TECHNOLOGY REQUIREMENT NO
1. TECHNOLOGY REQUIREMENT (TITLE): Fabrication, Assembly PAGE 1 OF 1 and Joining of Materials for Large Space Structures
2. TECHNOLOGY CATEGORY:
3. OBJECTIVE/ADVANCEMENT REQUIRED: Develop processes for producing
and joining light-weight structural materials (e.g., rods and sheets of metal
foams) in space for large space structures.
1. CURRENT STATE OF ART: None.
HAS BEEN CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY
Materials and processes research in foamed metal, design of a modular space assembly system, design of tooling to produce the desired panels in space and planning and implementing a space experiment to prove the concept. An iritial space experiment is needed to produce the foamed metal in the low gravity and vacuum conditions of space.
p/l requirements based on: ☐ pre-a, ☐ a, ☐ b, ☐ c/d
6. RATIONALE AND ANALYSIS:
The large space structure will be needed to provide for an antenna for transmission of solar electric power to earth, a mirror for direction of concentrated solar radiation to earth-based power generators, either voltaic or thermal, and for a space station for habitation of space construction and maintenance workers. Thus, a space structure is needed in the near future to support the energy needs of earth. A space-base for other needs (e.g., manufacturing and research in low gravity) will be needed later. The foamed-metal in-space technique will allow materials of construction to be transported easily in the Space Shuttle in compact form a if deployed in space as a large, light-weight structure. Otherwise, many trips of the Space Shuttle will be required if light-weight, pre-formed but bulkly modules are produced on earth for erection into a space structure.
TO BE CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO52
1. TECHNOLOGY REQUIREMENT (TITLE): Space Processing of Ceramics and Glass	PAGE 1 OF <u>4</u>
2. TECHNOLOGY CATEGORY:	
3. OBJECTIVE/ADVANCEMENT REQUIRED: The objective of	this program is to
develop experiments utilizing the space environment to gain	
understanding of some of the basic phenomena and behavior a	
4. CURRENT STATE OF ART:	(Cont'd)
HAS BEEN (CARRIED TO LEVEL
5. DESCRIPTION OF TECHNOLOGY	
See Page 4.	
See rage 4.	
P/L REQUIREMENTS BASED ON: PRE	$-A, \square A, \square B, \square C/D$
6. RATIONALE AND ANALYSIS:	
Ceramics and glasses have important applications both i on Earth. Ceramics exhibit high-temperature strength a certain environments and are critical to the performance	nd inertness to e of advanced
nuclear and solar power systems. Special glass composi	tions possess
characteristics critical to certain optical and laser a Development of new ceramics and glasses with enhanced p improvement of present compositions depend upon gains i	erformance and the
characteristics: •Purity and homogeneity of ceramics an	d vlasses
Grain size of ceramics	
 Freedom from crystallization in glass 	es
The space environment provides he opportunity to produout a container because of the absence of gravity. Con	tainerless processing
and melting avoids the introduction of contaminants int	o the material from
the container. Further, absence of a container allows molten material without providing nucleation sites from	
container walls. Certain complex glass compositions ar	e especially prone
to deleterious crystallization of this type. Likewise,	grain size control
in those ceramics produced by the melting process would (Cont'd P.4) TO BE C	CARRIED TO LEVEL

DEFINITION OF TECHNOLOGY REQUIREMENT	NO. 52
1. TECHNOLOGY REQUIREMENT(TITLE):	PAGE 2 OF <u>4</u>
Space Processing of Ceramics and Glass	
7. TECHNOLOGY OPTIONS:	
8. TECHNICAL PROBLEMS:	
9. POTENTIAL ALTERNATIVES:	
10. PLANNED PROGRAMS OR UNPERTURBED TECHNOLOGY ADVANC	CEMENT:
Date 1	
See Page 4.	
EXPECTED UNPERT	CURBED LEVEL
11. RELATED TECHNOLOGY REQUIREMENTS.	

DEFINITION ()F 7	EC	HN	OLC)GY	RE	QU	IRE	ME	ΝT					N	10.	52		
1. TECHNOLOGY REQUIRES			•		•									P	'AG	E 3	OF	4	-
12. TECHNOLOGY REQUI	REM	IEN	TS	SCI	IED			ND.	AR	YE	AR								
SCHEDULE ITEM	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91		
TECHNOLOGY 1. Analysis					-														
 Ground-bases exp. Space exp. 						-			_										
4. Test and Evaluation			_											: :					
5.																			
APPLICATION 1. Design (Ph. C) 2. Devl/Fab (Ph. D)																			
3. Operations 4.																			
13. USAGE SCHEDULE:																			
TECHNOLOGY NEED DATE		lacksquare		_	<u> </u>					-	_			igdash	-	-	1	тот	AL
14. REFERENCES:		<u> </u>	<u> </u>		<u></u>		<u></u>	<u></u>		1_	<u></u>	1		<u></u>			.' -	<u></u>	

(a) OA Input on Space Processing for 1975 OAST Summer Workshop.

15. LEVEL OF STATE OF ART

- 1. BASIC PHENOMENA ORSERVED AND REPORTED.
- 2. THEORY FORMULATED TO DESCRIBE PHENOMENA.
- 3. THEORY TESTED BY PHYSICAL EXPERIMENT OR MATHEMATICAL MODEL,
- 4. PERTINENT FUNCTION OR CHARACTERISTIC DEMONSTRATED, E.G., MATERIAL, COMPONENT, ETC.
- 8. COMPONENT OR BREADBOARD TESTED IN RELEVANT ENVIRONMENT IN THE LABORATORY.
- 6. MODEL TESTED IN AIRCRAFT ENVIRONMENT.
- 7. MODEL TESTED IN SPACE ENVIRONMENT.
- 8. NEW CAPABILITY DERIVED FROM A MUCH LESSER OPERATIONAL MODEL.
- 9. RELIABILITY UPGRADING OF AN OPERATIONAL MODEL.
 10. LIFETIME EXTENSION OF AN OPERATIONAL MODEL.

DEFINITION OF TECHNOLOGY REQUIREMENT 1. TECHNOLOGY REQUIREMENT (TITLE): Space Processing of Ceramics and Glass PAGE 4 OF 4

Present space processing programs involving ceramics and glasses have not addressed certain areas which have important implications to industry. As examples of these areas, two have been selected for discussion here. These are (1) the formation and control of bubbles in glass; and (2) the behavior of fine powders during compaction.

Bubble behavior during glass processing is of major significance in the production of containers because of the effect that bubbles have on the strength and failure characteristics of containers. This problem has plagued the glass industry for years and is of major financial significance because of the large tonnage involved. Bubble formation and behavior in molten glass in the Earth environment involves the interplay of the weak forces of surface tension and gravity. Space offers a new avenue of research towards the solution of this problem since it provides a means of studying bubbles in glass free from the influence of gravity. Experiments in the Spacelab will be designed involving the melting and processing of glass so that bubble formation and behavior can be observed and recorded. The effects of various additions to the glass will be studied and of variations in processing parameters.

The majority of ceramic products are produced by the compaction of fine powders followed by firing at high temperatures. The properties of the products depends to a great extent upon the effects of the processing parameters on the microstructure of the ceramic. Such factors as powder size, shape, and surface charge as well as compaction pressure and time have important effects. A clearer understanding of powder behavior during compaction and sintering would be useful in the development of new or improved ceramics either by space processing or terrestrial manufacturing. It is expected that the weightlessness afforded by space would provide the opportunity to acquire this understanding. Carefully designed experiments will be conducted in the Spacelab to study systematically the various parameters involved in powder compaction and processing without the effect of gravity. Powder size and distribution, particle shape, surface charge, pressure, time and temperature will be studied.

(Continuations)

- processing of ceramics and glass. From the information gained, the development of new and improved ceramics and glasses either by space or terrestrial processing, as applicable, would be pursued.
- 4. involved to provide a basis for solving problems to improve terrestrial manufacturing processes. Another class of experiments in space will be designed to solve other problems by the development of processing methods for the production of improved materials in space.

CANDIDATE FLIGHT EXPERIMENTS

NO	<u>5a</u>
PAGE	: 1

1.	REF. NO.	PREP DATE		REV DATE	LTR
ĺ		CATEGORY			
2.	TITIF Refrac	tory Metal Heat Pipes			
<u> </u>		ADVANCEMENT DECLUDED	L	EVEL OF STATE OF	ART
3.	- -	ADVANCEMENT REQUIRED	CURRENT		REQUIRED
	posine to spa	effects of long term ex- ce environment and the ex-			
	_	s contamination on the operat	ional capa	bility of refrac	tory alloy/
1	liquid alkali	metal heat pipes. It is ant	icipated t	hat contamination	on may degrade
	the mechanica	l properties of the refractor	y alloy an	d increase the	corrosion
		efractory alloy by the liquid			
ĺ					
ļ					
4.	SCHEDULE REC	QUIREMENTS FIRST PAYLOAD	FLIGHT DATE	1980	
		OPMENT LEAD TIME 2			1985
5.	BENEFIT OF A	DVANCEMENT	NUI	MBER OF PAYLOADS	
		FITS Knowledge of the extent			
		y poor vacuum of near space o			
	and shielding	mechanisms and subsequent re	liability	improvement in t	he
	systems(s) or	which the heat pipes are a p	part (proba	pre bower system	MS).
	POTENTIAL COST	BENEFITS			
i					
			ESTIMATED C	OST SAVINGS \$	
			······································		
6.		IOLOGY ADVANCEMENT			
	TECHNICAL PROB	BLEMS			
					
	REQUIRED SUPPO	ORTING TECHNOLOGIES			
7.	HEFEHENCE DO	OCUMENTS/COMMENTS			
					

COMPARISON OF SPACE & GROUND TEST OPTIONS 8 SPACE TEST OPTION										_ PAG	E	2
maintaining on T-lll/Li and one W/Li heat pipe each at 1800, 2300, and 28000F. TEST DESCRIPTION: ALT.(max/min) 150 / 300 km, INCL. deg, TIME 4000+ hr BENNEFIT OF SPACE TEST: Confirm prior ground tests on the usability of heat pipes in near space. EQUIPMENT: WEIGHT kg, SIZE X X m, POWER kW POINTING STABILITY DATA ORIENTATION CREW: NO. OPERATIONS/DURATION / SPECIAL GROUND FACILITIES: EXISTING: YES NO. 9. GROUND TEST OPTION TEST ARTICLE: Heat Pipes of Ta T-lll/Li TEST DESCRIPTION/REQUIREMENTS: Hold heat pipes at high temperatures (1800 to 2800°P) for long times in simulated space environment. SPECIAL GROUND FACILITIES: Ultra-high vacuum test chambers with controlled leak of gases found in near space. GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY CY COST (S) GROUND TEST OPTION TASK CY GROUND TEST OPTION GROUND TEST OPTION TASK CY GROUND TEST OPTION GROUND TEST OPTION TASK CY GROUND TEST OPTION GROUND TEST OPTION TASK CY GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY		C	OMPAF	RISON O	F SPACE	& GROUND TE	ST C	PTIONS				
BENEFIT OF SPACE TEST: Confirm prior ground tests on the usability of heat pipes in near space. EQUIPMENT: WEIGHT	8											
in near space. EQUIPMENT: WEIGHT		TEST DESCRIPTION:	AL	T. (max/min	150	/_300k	m, IN(SL		deg, Ti	ME <u>40</u>	00+ hr
POINTING STABILITY DATA ORIENTATION CREW: NO. OPERATIONS/DURATION / SPECIAL GROUND FACILITIES: EXISTING: YES NO.		·										
POINTING STABILITY DATA ORIENTATION CREW: NO. OPERATIONS/DURATION / SPECIAL GROUND FACILITIES: EXISTING: YES NO.		EQUIPMENT: WEIG	нт		kg, SIZE	X	x		m, POV	VER		kW
ORIENTATION CREW: NO. OPERATIONS/DURATION SPECIAL GROUND FACILITIES: EXISTING: YES NO TEST CONFIDENCE 95% 9. GROUND TEST OPTION TEST ARTICLE: Heat Pipes of Ta T-111/Li TEST DESCRIPTION/REQUIREMENTS: Hold heat pipes at high temperatures (1800 to 2800°F) for long times in simulated space environment. SPECIAL GROUND FACILITIES: Ultra-high vacuum test chambers with controlled leak of gases found in near space. GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL TECH NEED DATE GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY		POINTING		s	TABILITY_			DATA_				
SPECIAL GROUND FACILITIES: EXISTING: YES NO		ORIENTATION			CREW:	NO OPI	ERATI	ONS/DURA	TION_			
9. GROUND TEST OPTION TEST ARTICLE: Heat Pipes of Ta T-111/Li TEST DESCRIPTION/REQUIREMENTS: Hold heat pipes at high temperatures (1800 to 2800°F) for long times in simulated space environment. SPECIAL GROUND FACILITIES: Ultra-high vacuum test chambers with controlled leak of gases found in near space. GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (S) COST (S) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL GRAND TOTAL GRAND TOTAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY												
9. GROUND TEST OPTION TEST ARTICLE: Heat Pipes of Ta T-111/Li TEST DESCRIPTION/REQUIREMENTS: Hold heat pipes at high temperatures (1800 to 2800°F) for long times in similated space environment. SPECIAL GROUND FACILITIES: Litra-high vacuum test chambers with controlled leak of gases found in near space. GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL THE COST (\$) GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY								{	XISTIN	IG: YES		NO K
TEST DESCRIPTION/REQUIREMENTS: Hold heat pipes at high temperatures (1800 to 2800°F) for long times in simulated space environment. SPECIAL GROUND FACILITIES: Ultra-high vacuum test chambers with controlled leak of gases found in near space. EXISTING: YES X NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY								TEST CON	IDENC	E 95	·8	
2800°F) for long times in simulated space environment. SPECIAL GROUND FACILITIES: Ultra-high vacuum test chambers with controlled leak of gases found in near space. GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY	9.). GROUND TEST OPTION TEST ARTICLE: Heat Pipes of Ta T-111/Li										
2800°F) for long times in simulated space environment. SPECIAL GROUND FACILITIES: Ultra-high vacuum test chambers with controlled leak of gases found in near space. GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY												
Of gases found in near space.		TEST DESCRIPTION/R 2800°F) for long	EQUIRE	MENTS:	Hold hea	nt pipes at h space environ	igh ment	tempera •	tures	(180	10 to	<u> </u>
Of gases found in near space.												
Of gases found in near space.		SPECIAL GROUND FA	CILITIES	Ultr	a-high v	acuum test c	hamb	ers wit	h con	troll	ed 1	eak
GROUND TEST LIMITATIONS: TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY												
TEST CONFIDENCE 60% 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY								E	XISTIN	G: YES	s X	NO 🗆
10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY		GROUND TEST LIMITA	ATIONS:		 							
10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION TASK CY COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY							TES	T CONFIDE	NCE	609		
TASK CY COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY							-					
1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL 11. VALUE OF SPACE TEST \$	10.	SCHEDULE & COS	T	SPAC	CE TEST O	PTION	<u> </u>	GRO	UND T	EST O	PTION)
2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$	1	rask cy	<u>'</u>			COST (\$)	 					COST (\$)
3. MFG & C/O 4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$		1. ANALYSIS						1 1	1			
4. TEST & EVAL TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$		2. DESIGN	1 1	İ				1		1	•	
TECH NEED DATE GRAND TOTAL GRAND TOTAL 11. VALUE OF SPACE TEST \$		3. MFG & C/O]]	l		1 1		1 1	1			
GRAND TOTAL 11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY		4. TEST & EVAL	1				<u> </u>				<u> </u>	.
11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY	_1	ECH NEED DATE							<u> </u>	<u> </u>		
12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY				GRANI	TOTAL			GRA	ND TO	TAL		<u></u>
	11.	VALUE OF SPACE	TEST \$			(SUM OF	PROC	GRAM CO	STS \$ _			.)
	12.	DOMINANT RISK/	TECH P	ROBLEM	1			COST IMP	ACT	P	ROBA	BILITY
COST RISK \$												

TITLE Refractory Metal Heat Pipes

NO. 5a

NO.	5b	
DAG		

1.	REF. NO.			REV DATE	LTR
		CATEGORY			
2.	TITLE Refractor	ry Metal Contamination			
L .					
3.	TECHNOLOGY AD	VANCEMENT REQUIRED		EVEL OF STATE OF	
	Near space is ex	spected to be sufficiently	CURRENT	UNPERTURBED	REQUIRED
	contaminating to	refractory metals, par-		u domada their	strongth
	ticularly column	ouim and tantalum, as to sing long time service. Neit	her the ex	tent of contamir	ation nor
	the extent of de	egradation of mechanical pr	operties a	re now known.	
4.	SCHEDULE REOLL	IREMENTS FIRST PAYLOAD	FLIGHT DAT	E1980	
7.		MENT LEAD TIME2Y			1985
 -					
5.	BENEFIT OF ADV			MBER OF PAYLOADS	
	TECHNICAL BENEFI	TS Knowledge of space con efractory metals is require	ntamination	proper design	mechanical
	tection (if neo	essary) of refractory meta.	I component	s of power syste	ams, etc
	POTENTIAL COST BE	ENEFITS			
L			_ESTIMATED	COST SAVINGS \$	
6.	RISK IN TECHNO	LOGY ADVANCEMENT			
1		EMS			
; 1					
	DESCRIPTION OF THE PROPERTY OF	TIMO TECHNOLOGICO			
	REQUIRED SUPPOR	TING TECHNOLOGIES			
7.	REFERENCE DOO	CUMENTS/COMMENTS			

TITLE Refractory Metal Contamination NO. 5b															
													PAG	E	2
		CC	MPARIS	SON O	F SP	ACE 8	& GR	OUND 1	TEST (OPTIO	ONS				
8.	SPACE TEST	OPTIC	N	TEST	ARTI	CLE:	She	et and,	or w	ire c	of ca	ndid	ate 1	efr	actory
	TEST DESCRIPTION: ALT. (max/min) 150 / 300 km, INCL. deg, TIME 4000+ hr Resistively heat specimens to 1800-2800 Foin space environment. Return to Earth for measurement of residual mechanical properties. BENEFIT OF SPACE TEST: Confirm prior ground tests on space contamination effects														
	on mechanica								on sp	pace	cont	amın	ation	ı er	tects
	EQUIPMENT:	WEIGH	т		kg, S	SIZE _		_ x	×	C DA	'	n, POW	ER _		kW
	ORIENTATION														
	SPECIAL GROUNI														
										TEST	EX	ISTIN	G: YES	s 🗀	NO X
9.															
	TEST DESCRIPTION/REQUIREMENTS: Conduct long-term creep tests in simulated space environment. Also conduct creep and other evaluations after long-term exposure to simulated space environment. SPECIAL GROUND FACILITIES: High vacuum creep and exposure systems with controlled leaks of space gases to simulate space environment.														
											EX	ISTIN	3: YES	K	NO 🗀
	GROUND TEST LI	MITAT	IONS:												,
									TES	T CON	FIDEN	CE _	60%		
10.	SCHEDULE &	COST		SPA	CE TE	ST OP	TION			(SROU	ND TI	ST OF	PTION	
T	ASK	CY						COST (\$	2)						COST (\$)
	1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL														
	ECH NEED DATE														1
				GRANI	тот с	AL				G	RAN	TOT	AL		
11.	VALUE OF SPA	CE TI	EST \$ _					(SUM O	F PROC	RAM	COST	s \$ _			.)
12.	DOMINANT RI	SK/TE	CH PRO	BLEM	1					COST	IMPA	CT	PI	ROBA	BILITY
	COST RISK \$		<u></u>			<u></u>			-		·····				

NO	
PAGE	1

1.	REF. NO. Tech. Reqmt. PREP DATE 8/1	11/75	REV DATE	LTR								
st	REF. NO. Tech. Regmt. PREP DATE 8/1 CATEGORY Lar ructures, very long life components/systems TITLE Light Metal Allovs - Long Time, Lov	rge, contro	Hable, Hight we	ignt								
2.	TITLE Light Metal Alloys - Long Time, Lov	v Earth Orb	it Exposure on M	echanical								
8t	ability											
			EVEL OF STATE OF A	OT.								
3.	TECHNOLOGY ADVANCEMENT REQUIRED	CURRENT	UNPERTURBED	REQUIRED								
	Provide long exposure baseline mechanical	6	6	10								
	property data for very thin gage light metal alloys of beryllium and beryllium -											
	constraints imposed by space environment i	for thin ca	ge allovs. Prov	ide input								
	data for development of very long time bel											
												
4.	SCHEDULE REQUIREMENTS FIRST PAYLOAD	ELIGHT DATI	1979									
٦.	PAYLOAD DEVELOPMENT LEAD TIME 1 Y			1985								
	PAYLOAD DEVELOPMENT LEAD TIMEY	EARS. TECH	NOLOGY NEED DATE									
5.	BENEFIT OF ADVANCEMENT	NU	MBER OF PAYLOADS									
	TECHNICAL BENEFITS (1) Improved structural	l reliabili	ty of very long	life								
	structural systems/components (2) Consider	eration of	residual mechan	ical								
	property allowaties in very long life desi	ign.										
	POTENTIAL COST BENEFITS Cost benefits must	be weighed	on the basis of									
	increased probability of mission success.											
		ESTIMATED O	OST SAVINGS \$ Med	(long range)								
6.	RISK IN TECHNOLOGY ADVANCEMENT											
	TECHNICAL PROBLEMS											
	REQUIRED SUPPORTING TECHNOLOGIES (1) Fabr	rication an	d processing of	thin								
	walled structural elements.											
7.	REFERENCE DOCUMENTS/COMMENTS A for	recast of s	pace Technology	1980-2000,								
	final draft Outlook for Space.											

TI	TLE <u>Light me</u> mechanical s				Long	<u>tim</u>	e, 1	ow e	arth orb	it e	wos	ure (on	NO.		7
	COMPARISON OF SPACE & GROUND TEST OPTIONS															
8.	SPACE TEST (speciments	PTIC	ON	1	TEST .	ARTIC	CLE: .	Thi	n gage s	truc	tura	l ele	emen	t tes	st	
	Expose element erty determine BENEFIT OF SPACE vacuum environe	ntal natio E TES	spec on em st:_A	imen viro	s to nnen	spa t an	ce e	nvin turn	for res	nd ro idua	tur L pr	n for	re v.d	sidua etem	l pr inat	ion.
	EQUIPMENT: WEIGHT 50 kg, SIZE 5 X 3 m, POWER 0 kW POINTING STABILITY DATA ORIENTATION CREW: NO. OPERATIONS/DURATION /															
	SPECIAL GROUND	FAC	LITIE	S:								EX			· 🗆	NO 🗌
9.																
	simulated mic	rome	teon	oid (envi	ronm	ents	and	measure	resi	dua:	l pro	pert	y va	lues	
	GROUND TEST LIF	MITAT	TIONS:	L	ack (of a	cura	ite e	envirenm	ental				S: YES	X	NO
		·			<u> </u>					TEST	CON	FIDEN	CE O.	.7	· · · <u></u>	
10.	SCHEDULE & C	OST	ſ		SPAC	E TE	ST OP	TION			G	ROUI	ND TE	ST OF	TION	
7	ASK	CY	78	79	80	81	8.2	83	COST (\$)	78	79	80	81	82	83	COST (S)
	1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL ECH NEED DATE		.02 .05	.2	.1	.1	.1	.1	.02 .05 .2 •5	.02	.2	.02	.02	.02		.02 .05 .2 .06
				G	RANC	тот	AL		,77M		G	RANE	тот	AL		M
11.	VALUE OF SPA	CE T	EST S	5					(SUM OF	PROG	RAM	COST	s \$)
12.	DOMINANT RIS	SK/T	ECH P	ROB	LEM					C	OST (MPAC	т	PI	ROBA	BILITY
	COST RISK \$															

NO	9a	_
PAGE	1	

	REF. NO.	PREP DATE		REV DATE	LTR				
		CATEGORY St	ructures an	REV DATE d Spacecraft/Med	chanical				
2.	TITLE <u>Processing and</u> Environments.	Use of Chemically—A	ctive Metal	s in Space and I	Planetary				
3.	TECHNOLOGY ADVANCE	MENT REQUIRED	L	EVEL OF STATE OF	ART				
	Provide alloy theory f	or the use of	CURRENT	UNPERTURBED	REQUIRED				
	chemically-active meta	ds as primary							
	alloy systems or as all been contempted through								
	active metals include	•		- -					
			·						
									
-									
4.	SCHEDULE REQUIREMEN			E					
	PAYLOAD DEVELOPMENT LE	AD TIME	EARS. TECH	NOLOGY NEED DATE					
5.	BENEFIT OF ADVANCEM	_ · · ·	NU	MBER OF PAYLOADS					
	TECHNICAL BENEFITS Our use materials in the s	r present materials specific chemical en	technology vironment o	has grown from of earth. It see	our need to				
	able to expect such te	echnology to produce	optimim ma	iterials for use	in other				
		_		=					
	systems which have proceed for develop POTENTIAL COST BENEFITS	chemical environments such as found in space or on other planets. Many alloy systems which have proved to be poor performers on earth or which would never be considered for development on earth may perform well when exposed only to the POTENTIAL COST BENEFITS specific environments encountered in space. Unique							
l		properties never b	efore conte	amplated may be	Unique possible.				
1		properties never b	efore conte	mplated may be	Unique possible.				
	Potentially unlimited.		efore conte	emplated may be cost savings \$	possible.				
6.			efore conte	amplated may be	possible.				
6.	RISK IN TECHNOLOGY A	DVANCEMENT	efore conte	amplated may be	possible.				
6.		DVANCEMENT	efore conte	amplated may be	possible.				
6.	RISK IN TECHNOLOGY A	DVANCEMENT	efore conte	amplated may be	possible.				
6.	RISK IN TECHNOLOGY A	DVANCEMENT	efore conte	amplated may be	possible.				
6.	RISK IN TECHNOLOGY A TECHNICAL PROBLEMS	DVANCEMENT	ESTIMATED	emplated may be processed to the process of the pro	possible.				
6.	RISK IN TECHNOLOGY A	DVANCEMENT	ESTIMATED	amplated may be	possible.				
6.	RISK IN TECHNOLOGY A TECHNICAL PROBLEMS	DVANCEMENT	ESTIMATED	emplated may be processed to the process of the pro	possible.				
6 .	RISK IN TECHNOLOGY A TECHNICAL PROBLEMS REQUIRED SUPPORTING TEC	CHNOLOGIES	ESTIMATED	emplated may be proceed the cost savings \$	possible.				
	RISK IN TECHNOLOGY A TECHNICAL PROBLEMS	CHNOLOGIES	ESTIMATED	emplated may be proceed the cost savings \$	possible.				
	RISK IN TECHNOLOGY A TECHNICAL PROBLEMS REQUIRED SUPPORTING TEC	CHNOLOGIES	ESTIMATED	emplated may be proceed the cost savings \$	possible.				

TITLE Processing and Use of Chemically-Active Metals in Space NO. 9a PAGE 2 and Planetary Environments. COMPARISON OF SPACE & GROUND TEST OPTIONS TEST ARTICLE: Active element alloy formation, manu-8. SPACE TEST OPTION facture, prox g and evaluation in the space environment. TEST DESCRIPTION: ALT. (max/min) ______/___S > 33.63. ______deg, TIME ______hr BENEFIT OF SPACE TEST. Material evaluation of specific alloy compositions designed for space-related environments without expenses to the environment. WEIGHT Kg, SIZE X M, POWER EQUIPMENT: STABILITY ______DATA__ POINTING SPECIAL GROUND FACILITIES: EXISTING: YES NO _____TEST CONFIDENCE __ 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: SPECIAL GROUND FACILITIES: EXISTING. YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** CY COST (\$) TASK COST (S) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE **GRAND TOTAL GRAND TOTAL** 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____

1 (TDR.977)

COST RISK \$

12. DOMINANT RISK/TECH PROBLEM

COST IMPACT

PROBABILITY

NO	9b
DAGE	4

1.			REV DATE	LTR
2.	TITLE Solid-Solid Metal Embrittlement	in the Space	Environment.	
3.	TECHNOLOGY ADVANCEMENT REQUIRED	L	EVEL OF STATE OF	ART
O .	The theoretical extension of the theory	CURRENT	UNPERTURBED	REQUIRED
	of liquid metal embrittlement to solid-	_		
	solid metal embrittlement or vapor solid	i metal embri	ttlement.	
			· · · · · · · · · · · · · · · · · · ·	
4.	SCHEDULE REQUIREMENTS FIRST PAYLO	AD FLIGHT DAT	E	
	PAYLOAD DEVELOPMENT LEAD TIME	_YEARS. TECH	NOLOGY NEED DATE	
5.	BENEFIT OF ADVANCEMENT		MBER OF PAY JADS	
	TECHNICAL BENEFITS A more complete under allowing a more accurate prediction of	rstanding of the life of a	environmental en metal structure	brittlement exporei
	for long duration in the space environm	ent. Solid n	metal embrittleme	ent and/or
	vapor metal embrittlement of a metallic			
	problem area. In the vacuum of space m	any metals ma Mandana lata	ly lose their pro	tective
	OSIGE COATINGS FOR A NUMBER OF REASONS OF POTENTIAL COST BENEFITS metal structure		contact with ot sure to other met	
		-		_
	which may be po-	ce the predi	rading. Such co cted life of the COST SAVINGS \$	metal may
	structure.	ESTIMATED	COST SAVINGS \$	
6.	RISK IN TECHNOLOGY ADVANCEMENT			
	TECHNICAL PROBLEMS			
	Water the state of			
		·		
	REQUIRED SUPPORTING TECHNOLOGIES Under		the potential dec	radation
	of metal alloys by chemical environments	5.		
,	DEEE DENICE DOCUMENTO/OOMMENTO			
7.	REFERENCE DOCUMENTS/COMMENTS			
	D 11 7 76			

TIT	TLE Solid-Solid	Meta	al Emb	ritt	leme	nt i	n the	e Space	Envi	ronn	ent		NO.	9b	
													PAG	E	2
		COME	PARISO	ON O	F SP	ACE 8	GR	OUND T	EST O	PTIC)NS				
8.	SPACE TEST OPT							-term				clear	n" me	tal	sur-
	faces to other		•												
	measure of long	-ten	n degr	adat	ion	of s	truct	ural 1	ife.						
	TEST DESCRIPTION:		ALT. (m	ax/min)		_/		km, INC	L			deg, Til	ME _	hr
	BENEFIT OF SPACE 1 potential creat	ion o	of hig	aina h pa	nce rtia	of c	lean essur	surface re metal	es fo	r lo	ng di with	urati	ion a	nd t	he cant
	level of contain EQUIPMENT: WE	unati GHT	ion.	-	kg, S	SIZE		x	X			n, POW	ER		kW
	POINTING			s	TABIL	.ITY _				DA	TA				
	ORIENTATION				CR	EW:	NO.	OF	ERATI	ONS/D	URAT	ION _			
SPECIAL GROUND FACILITIES:															
										rest (ONFI	DENCE			
9. GROUND TEST OPTION TEST ARTICLE:															
	TEST DESCRIPTION/	REQUI	REMEN	TS: _					<u>-</u> -						
	SPECIAL GROUND FA	ACILIT	IES:												
	GROUND TEST LIMIT	ATION									EX	ISTING	: YES		NO
									-						
									_ TEST	CON	FIDEN	CE			
10.	SCHEDULE & COS	ST		SPAC	E TE	ST OP	TION			•	ROU	ND TE	ST OP	TION	
T	ASK C	Y .						COST (\$)							COST (\$)
	1. ANALYSIS														
	2. DESIGN]]						
	3. MFG & C/O 4. TEST & EVAL														
-	LUH NEED DATE		_		 	 			<u> </u>		L	 			
			G	RAND	TOT	AL	<u> </u>			G	RAN	TOT	AL		
11.	VALUE OF SPACE	TEST						(SUM OF	PROG	RAM	COST	s \$ _)
12.	DOMINANT RISK	TECH	I PROB	LEM					(OST	IMPA	CT	PF	ROBA	BILITY
	COST RISK \$							***************************************							

NO. <u>10</u> PAGE 1

1.	REF. NO.			REV DATE								
2.	TITLE NUT/NDE Eart	h and Space										
3.	TECHNOLOGY ADVAN	CEMENT REQUIRED	L	EVEL OF STATE OF	ART							
J.	To advance the techn		CURRENT	UNPERTURBED	REQUIRED							
	destructive methods											
	and evaluation of ma could be directly ap	croscopic flaws in ma plied in space.	terials. S	Such that the tec	hniques							
4.	SCHEDULE REQUIREM			E								
	PAYLOAD DEVELOPMENT	LEAD TIMEY	EARS. TECH	NOLOGY NEED DATE								
5.	BENEFIT OF ADVANCE			MBER OF PAYLOADS								
	TECHNICAL BENEFITS	Inspection of erected ques and procedures f	space struor doing th	ectures will have to	to be be							
	established.											
l İ												
	POTENTIAL COST BENEFI	тѕ										
			ESTIMATED	COST SAVINGS \$								
6.	RISK IN TECHNOLOGY	ADVANCEMENT										
	TECHNICAL PROBLEMS _											
	REQUIRED SUPPORTING	TECHNOLOGIES										
<u> </u>												
7.	REFERENCE DOCUME	NTS/COMMENTS										
L												

													PAG	E	2
COMPARISON OF SPACE & GROUND TEST OPTIONS															
8.	SPACE TEST (OPTIO	N	TEST	ARTI	CLE:									
	TEST DESCRIPTIO	ON:	ALT	. (max/mii	n)		_/	k	m, INC	L			deg, TI	ME _	hr
	BENEFIT OF SPAC			erforme	nce	of a	ctual	tests	to g	ain	conf.	iden	œ ir	n pro	>
	EQUIPMENT:	WEIGH	T		kg, S	SIZE		Х	Х		n	n, POW	ER		kW
	POINTING				- STABIL	LITY _				DA'	TA				
	EQUIPMENT: WEIGHT kg, SIZE X X m, POWER kW POINTING STABILITY DATA ORIENTATION CREW: NO. OPERATIONS/DURATION /														
	SPECIAL GROUND FACILITIES: Testing procedures for specific joint geometries, etc														
	will first be established by ground testing. EXISTING: YES NO														
9.	GROUND TES	т орт	ION												
	9. GROUND TEST OPTION TEST ARTICLE:														
	TEST DESCRIPTION	N/REC	UIREN	IENTS:											
				•											
!					 -										
	SPECIAL GROUND) FACI	LITIES:				·			·					
				·,			,								
													G: YE	s L	NO 🗆
	GROUND TEST LI	MITAT	IONS: _										-		
				<u></u> _					TEST	T CON	FIDEN	<u> </u>			
10.	SCHEDULE &	COST		SPA	CE TE	ST OP	TION				ROU	ND TI	EST O	PTION	J
1	rask	CY						COST (\$)							COST (\$)
	1. ANALYSIS														
	2. DESIGN														
	3. MFG & C/O						1 1	}					ļ		
	4. TEST & EVAL				 	 	1		<u> </u>	ļ					4
	FECH NEED DATE			GRAN	L	[A]	-				RANI	TO	<u>Ι</u>		
									<u> </u>		INAIN				<u>L</u>
11.	VALUE OF SPA	ACE T	EST \$		·····			(SUM OF	PROG	RAM	COST	s \$ _			-)
12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILI									BILITY						
	COST RISK \$														

TITLE NDT/NDE Earth and Space

NO. 10

NO. <u>11</u> PAGE 1

1.	REF. NO. PREP DA	TE	nichiral a	REV DATE	LTR							
2.	TITLE Influence of Long-Term Space	Exposu	re on Loca	lized Plasticity	In Metals.							
3.	TECHNOLOGY ADVANCEMENT REQUIRE	ED		EVEL OF STATE OF								
	More complete understanding of the		CURRENT	UNPERTURBED	REQUIRED							
	influence of localized plasticity or)	- In motal	Lie etweetimes	A morre							
	flaw growth and strain energy release	se rate	s in metal	high recommend	ronments							
	complete understanding of how long-to- can influence both the character and	ease	of disloca	tion motion in I	etals and							
	alloys.											
	alloys.											
4.	SCHEDULE REQUIREMENTS FIRST PA											
	PAYLOAD DEVELOPMENT LEAD TIME	Y	EARS. TECH	NOLOGY NEED DAT	E							
5.	BENEFIT OF ADVANCEMENT		NU	MBER OF PAYLOADS	3							
		posure	of metal s	structures may q	reatly							
	influence the ease of local plastic	itv.	Such an ini	tuence may sign	litemicia							
	change flaw growth rates thus signi- plastic failure criteria for a stru	ficant	TA woortan	in the environm	ent of							
! !	space.	CLULE	W DE USEU	<u> </u>								
	POTENTIAL COST BENEFITS	······································										
	ESTIMATED COST SAVINGS \$											
<u> </u>												
6.	RISK IN TECHNOLOGY ADVANCEMENT											
	TECHNICAL PROBLEMS											
1												
		<u> </u>										
1		Theoret	ical devel	opments in inela	astic							
	REQUIRED SUPPORTING TECHNOLOGIES			-								
	AD STORY OF THE ST											
7.	REFERENCE DOCUMENTS/COMMENTS											
1												

TITLE Influence of Long-Term Space Exposure on Localized Plasticity NO. in Metals. _____PAGE COMPARISON OF SPACE & GROUND TEST OPTIONS TEST ARTICLE: Long-term exposure of various concentra-8. SPACE TEST OPTION tions of flawed metal alloys together with a measure of flaw growth and energy release ratio. TEST DESCRIPTION: ALT. (max/min) _____/___km, INCL. _____ deg, TIME _____ hr BENEFIT OF SPACE TEST: Maintenance of a very high vacuum for long durations at various levels of contamination. POINTING STABILITY DATA ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION _____/ SPECIAL GROUND FACILITIES: EXISTING: YES NO _____TEST CONFIDENCE _____ 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: SPECIAL GROUND FACILITIES: EXISTING: YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** CY COST (\$) TASK COST (\$) 1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL TECH NEED DATE **GRAND TOTAL GRAND TOTAL** 11. VALUE OF SPACE TEST \$ ____ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY COST RISK \$

NO	12		
PAGE		1	

1.	REF. NO. PREP DATE		REV DATE	LTR						
	CATEGORY									
2.	TITLE Solar Cell Solder Connections With	Extended I	ife During Them	al						
	Cycling In Orbit									
3.	TECHNOLOGY ADVANCEMENT REQUIRED	L	EVEL OF STATE OF	ART						
0.	Develop an improved joint-solder combin-	CURRENT	UNPERTURBED	REQUIRED						
	ation for silicon solar cells to elimin-									
	ate embrittlement by inter-metallic compo									
	thermal cycling in orbit for more than 60,									
	lead-tin solder reacts with silver and titanium barrier and contact layers causing embrittlement and mechanical breakage of individual joints resulting									
	in reduced power output with time in orbit.									
				* .						
			- 1000							
4.	PAYLOAD DEVELOPMENT LEAD TIMEY			1980						
	PAYLOAD DEVELOPMENT LEAD TIMEY	EARS, TECH	NOLOGY NEED DATE							
5.	BENEFIT OF ADVANCEMENT	NU	MBER OF PAYLOADS	·						
	TECHNICAL BENEFITS Solar cell arrays opera									
	thermal gradient as much as 120°C, from so	in to earth	shadow. Most o	of the ef-						
	fects of the thermal gradient can be accompansion) but embrittlement of the solder									
İ	cannot. Hard inter-metallic compounds are	e formed by	diffusion which	become						
	prittle and cause some individual contacts	to break etofore, la	with a concomita irge solar arrays	int loss in S (Skylab,						
	HEAO, etc.) have be									
	duced output with time. Longer life and									
	programs in space or on earth will pre- clude such a cavalier treatment of the pro-	ESTIMATED	cost sayings s 20	by careful						
6.	attention to the metal lurgical bond in the RISK IN TECHNOLOGY ADVANCEMENT	ne joint ar	m barrier layer.	•						
	TECHNICAL PROBLEMS									
										
	REQUIRED SUPPORTING TECHNOLOGIES									
	HEGGINED SOFFORTING TECHNOLOGIES									
 										
7.	REFERENCE DOCUMENTS/COMMENTS									
<u></u>										

COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: Solar Array TEST DESCRIPTION: ALT. (max/min) 240 / 180 km, INCL. any deg, TIME 3yrs. XX BENEFIT OF SPACE TEST: Synergistic combination of all environmental parameters. EQUIPMENT: WEIGHT _____ 200 ___ kg, SIZE ____ X ___ 2 ___ X ___ 0.02 __m, POWER ___ NOTE ____ kW POINTING Solar Rector STABILITY +10 CREW: NO. ____OPERATIONS/DURATION ____ ORIENTATION SPECIAL GROUND FACILITIES: _ EXISTIN'S: YES NO _____TEST CONFIDENCE __ 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: SPECIAL GROUND FACILITIES: EXISTING: YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** CY 77 78 79 80 TASK COST (\$) COST (\$) 1. ANALYSIS 100k 150k 2. DESIGN 500k 3. MFG & C/O 200k 4. TEST & EVAL TECH NEED DATE 950k **GRAND TOTAL GRAND TOTAL** 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY COST RISK \$

TITLE Solar Cell Solder Connections With Extended Life During

Thermal Cycling in Orbit

1.1 (1 DR 2) 7:75

NO. 12

PAGE 2

NO.	13
DACI	

1.	REF. NO.			REV DATE							
2.	TITLE Joining Metal										
3.	TECHNOLOGY ADVANCE To easily and reliable metallurgical bonds f	y produce strong	CURRENT	EVEL OF STATE OF A	ART REQUIRED						
	assembly of metallic structures by utilizing cold resistance, and explosive welding techniques. These techniques would tend to be particularly suited to the "clean" space environment.										
4.	SCHEDULE REQUIREME PAYLOAD DEVELOPMENT L			E NOLOGY NEED DATE							
5.											
			ESTIMATED C	COST SAVINGS \$							
6.	RISK IN TECHNOLOGY A										
	REQUIRED SUPPORTING TE	CHNOLOGIES									
7.	REFERENCE DOCUMENT	rs/comments									
T (TE	20.43.3.76	·			أسير والمساور والمساور						

TI	TLE <u>Joining</u>	Metals	in Sp	ace								NO.		L3 2
<u> </u>		COM	PARISO	ON OF S	PACE	& GR	OUND TI	FST O	PTIC)NS				
8.	SPACE TEST (
	TEST DESCRIPTIO	N:	ALT. (m	ax/min)		_/_		km, INC	L			dcg, TIM	IE	hr
	BENEFIT OF SPACE operations.	E TEST:	Actu	al prac	tice	of p	erformin	ng th	e ap	brob	riat	e joir	ning	J
	EQUIPMENT: POINTINGORIENTATION			STAB	ILITY _				DA	TA				
	SPECIAL GROUND	FACILIT	TIES: H	igh vac	uum f	abri	cation f	Eacil	ity	for	perf	orming	3	
	collateral w	OLK CII	car ar.											
9.	GROUND TES	T OPTIO	N 1		•									
	TEST DESCRIPTIO	N/REQU	REMEN	TS:										
	SPECIAL GROUND	FACILIT	TIES:											
	GROUND TEST LIF	MITATIO	NS:							EX	ISTING	: YES		NO
								TEST	CON	FIDEN	CE			
10.	SCHEDULE & C	OST		SPACE T	EST OP	TION			•	ROU	ND TE	ST OP1	TION	
T	ASK	CY					COST (\$)							COST (\$)
	1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL ECH NEED DATE													
<u> </u>	CONTROL DATE		Gi	RAND TO	TAL	<u> </u>		╟	G	RANI	TOT	AL		
11.	VALUE OF SPA	CE TES	Т\$				(SUM OF	PROG	RAM	COST	s \$)
12.	DOMINANT RIS	SK/TECH	I PROB	LEM				C	OST	IMPA	CT	PR	OBA	BILITY
	COST RISK \$												•	

NO.	19)
DAG	E	1

1.	REF. NO.	_PREP DATE _ CATEGORY _	8/9/75 Basic Mat	REV DATE erials Research	LTR				
2.	TITLE _Solid State Diffusio	n Studies							
3.	TECHNOLOGY ADVANCEMENT	REQUIRED		LEVEL OF STATE OF	ART				
Ŭ.	To obtain diffusion data for		CURREN	UNPERTURBED	REQUIRED				
	requiring very high temperat	ures and	<u> </u>		<u> </u>				
	containerless conditions for applications (ex. compatabil								
	high temperature materials.	ity) and for	increased	accuracy of milo	illactor on				
4.	SCHEDULE REQUIREMENTS	FIRST PAYLO	AD FLIGHT DA	\TE					
	PAYLOAD DEVELOPMENT LEAD TIM	E	YEARS. TE	HNOLOGY NEED DAT	E				
5.	TECHNICAL BENEFITS (1) Would eliminate the need for inaccurate extrapolation of long time, low temperature experiments and (2) would make data available for the investigation of possible changes in diffusion mechanism at high								
	temperatures.								
	POTENTIAL COST BENEFITS								
			ESTIMATE	D COST SAVINGS \$					
6.	RISK IN TECHNOLOGY ADVANCE TECHNICAL PROBLEMS								
	REQUIRED SUPPORTING TECHNOLO	GIES							
7.	REFERENCE DOCUMENTS/COM	MENTS							
L									

										_ PAGE		2
		COMPA	RISON O	F SPACE	& GR	OUND T	EST C	PTION	S			
8.				ARTICLE:						to vac	חונני	and
	controlled high	temper	ature (1000° C	and h							
	for container ma	iterial	for sp	ecimens	•							
i	TEST DESCRIPTION:	AL.	T. (max/mir	n)	1		km, IN(CL.		deg, T!M	IE	hr
	TEST DESCRIPTION: Samples exposed			itions	for h	ours to	days	. Ret	urned	to ear	th	for
	sectioning and a	malysi	s.									
	BENEFIT OF SPACE TO								and p	<u>ossibi</u>	lit	y of
	EQUIPMENT: WEIG	3HT		kg, SIZE		_ X	x		m, POV	NER		kW
	POINTING		s	STABILITY				DATA	·			
	ORIENTATION								IATION _			
	SPECIAL GROUND FA	CILITIES										
								TEST CO	NFIDENC	<u>Ε</u>		
9.	GROUND TEST OPTION TEST ARTICLE:											
	TEST DESCRIPTION/R	EQUIREN	MENTS: _									
								·				
				·								
	SPECIAL GROUND FA	CILITIES	:									
									FXISTIN	G: YES	一	NO [
	GROUND TEST LIMITA	ATIONS:	The e	xperime	nts de	escribe	l abor		-			
	the ground.											
							TEST	T CONFID	ENCE _			
10.	SCHEDULE & COS	T	SPA	CE TEST O	PTION		1	GR	OUND T	EST OPT	LION	
	ASK CY	+	7		7	COST (\$)	:		1	П	\neg	COST (S)
	1. ANALYSIS	+-+		 	+	1	┧├──	 	-	+-+	-	0031 ,0,
	2. DESIGN										j	İ
	3. MFG & C/O							1				
	4. TEST & EVAL	++		↓_	—	4	 	 		 		
	ECH NEED DATE	+	GRANG	TOTAL	Щ_	 	╢		AND TO			 _
				TOTAL		<u> </u>	<u> </u>					
11.	VALUE OF SPACE	TEST \$				(SUM OF	PROG	RAM CO)STS \$ _)
12.	DOMINANT RISK/	TECH PF	ROBLEM	1			C	MI TZO:	PACT	PRO	DBA	BILITY
	a a di											
	COST HISK \$											

NO. 19

TITLE Solid State Diffusion Studies

NO.	21
PAG	F 1

1.	REF. NO	0			PREP DATE CATEGORY	8/ Ba	/9/75 nsic Materi	REV DATEals Research	LTR
2.	TITLE	Phase	Diagram S	tudies	at Low Pr	ess	sure and Ze	ero g.	
3.			ADVANCEN					EVEL OF STATE OF	
			of phase				CURRENT	UNPERTURBED	REQUIRED
	be used	pressu in spa	res for me	cturing	and in a	ro.	ind based v	acuum melting.	Need is to
		-			-			ble formation a	
	homogen	ieties.	•						
									
									
4.	SCHEDU	JLE REC	UIREMENT	rs i	FIRST PAYLO)AD	FLIGHT DAT	E	
	PAYLOA	D DEVEL	OPMENT LEA	D TIME		Y	EARS. TECH	NOLOGY NEED DAT	E
5.			OVANCEME					MBER OF PAYLOADS	
	TECHNIC	AL BENE	FITS Def	initio	n of condi	tic	ons for imp	proved metal pro	ducts cast
	in vacu	ium and	by space i	manurac	cturing te	Cni	iidas.		
	-								
	POTENTI	AL COST	BENEFITS _						
					***			· · · · · · · · · · · · · · · · · · ·	
			······································						
							ESTIMATED	COST SAVINGS \$	
6.	RISK IN	TECHN	OLOGY AD	VANCE	MENT				
	TECHNIC	AL PROB	LEMS						
	•								
					-				
	REQUIRE	ED SUPPO	RTING TECH	NOLOGI	ES				
	•								
7.	REFERE	NCE DO	CUMENTS/	соммі	ENTS				
				·					

1 (10)(1) / /5

TIT	LE Phase	Diagra	m Studie	s at	Low	Pres	ssur	e and 2	Zero	g.			NO. PAGE		2
		co	MPARISO	N OF	SPAC	E &	GRO	UND TE	EST O	PTIC)NS				
8.	SPACE TEST to various			EST A	RTICLI	E: _Se ar	Spec nd t	imens c ime.	of de	sire	d co	mposi	tion	හෙර	osed
	TEST DESCRIPT Specimens w under zero	g and :	returned	to c	pround	for	r fw	rther t	reat	ment	•				
	BENEFIT OF SPA sample by g			g cc	onditi	ons	elir	ninate	pres	sure	s ge	nerat	ed w	ithi	n the
1	EQUIPMENT:	WEIGH	T		kg, SIZI	E		. ×	x		n	n, POWI	ER		kW
	POINTINGORIENTATION			S1	TABILIT	Υ				DA	TA				
	SPECIAL GROUP										ואחטי				
												ISTING DENCE			
_	0001110.75	OT 007													
9.	GROUND TE	51 UPI	IUN I	IESIA	AHTICL	E:									
	TEST DESCRIPT	ION/REC	JUIREMEN	TS:											
	SPECIAL GROU	ND FACI	LITIES:		 										
											EX	ISTING	YES		NO 🔲
	GROUND TEST	LIMITA (ions: <u>Gr</u>	avita d in	ationa /alida	il ei	ffec the o	ts on r	ress	ure	with	in sa	mple	des	troy
									TES	T CON	FIDEN	CE			
10.	SCHEDULE 8	COST		SPAC	E TEST	OPT	ION			(GROU	ND TE	ST OP	TION	
т	ASK	CY						COST (\$)							COST (\$)
	1. ANALYSIS														
	2. DESIGN 3. MFG & C/O														
	4. TEST & EVAL														
]	ECH NEED DAT	E													 -
	-		G	RAND	TOTAL	L					RAN	D TOT	AL		
11.	VALUE OF SI	ACE T	EST \$			_		(SUM OF	PROG	RAM	COST	's \$)
12.	12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY									BILITY					
	COST RISK \$														

N	Э.	_	22	2	 _
D/	C	_		1	

1.	REF. NO.	PREP DATE	8/9/75	REV DATE	LTR
		CATEGORY .	Basic Mater	ials Research	
2.	TITLE High Temperature	Vaporization St	udies of Cor	rosive Molten Sa	ilts
_,					
3.	TECHNOLOGY ADVANCEM	ENT DECILIBED		EVEL OF STATE OF	ART
Э.	Vaporization rates and r		CURRENT	UNPERTURBED	REQUIRED
	namic data are needed for	r high tempera-			
	ture conditions that are	unattainable o			
	reactive container mater				
	the elucidation of the h				oblem in
	aircraft turbines, groun	d based power p	ants and mar	rine turbines.	
					
		<u> </u>			
			· · · · · · · · · · · · · · · · · · ·		
_	SCHEDULE REQUIREMENTS	C FIRST BAVEO	AD ELICHT DAT	F	
4.				E	
	PAYLOAD DEVELOPMENT LEAD) IIME	_YEARS. TECH	NOLOGY NEED DATE	
5.	BENEFIT OF ADVANCEMEN	I T	NU	MBER OF PAYLOADS	
	TECHNICAL BENEFITS The d	lata obtained wi			
	one of which is hot corr	osion interpret	ation and mir	nimization.	
	POTENTIAL COST BENEFITS _				
			ESTIMATED	COST SAVINGS \$	
6.	RISK IN TECHNOLOGY ADV	/ANCEMENT			
U.					
	TECHNICAL PROBLEMS				
	REQUIRED SUPPORTING TECHN	NOI OGIES			
	The down on the real field of the second	10E001E3			
		····			
7.	REFERENCE DOCUMENTS/	COMMENTS			

TITLE High Temperature Vaporizti	on Studies of Corr								
Salts		P	AGE 2						
COMPARISON OF	SPACE & GROUND T	EST OPTIONS							
8. SPACE TEST OPTION TEST A tion and associated equipment trameter.		ample levitated in ure control and mas							
TEST DESCRIPTION: ALT. (max/min) Heat sample and measure its ch spectrometer the molecular spe	cies that are vapo	rized.							
BENEFIT OF SPACE TEST: Can be done without the container contamination that nullifies ground based measurements.									
EQUIPMENT: WEIGHT	kg, SIZE X	X m, POWEF	kWkW						
POINTINGST ORIENTATION									
SPECIAL GROUND FACILITIES:									
		EXISTING: TEST CONFIDENCE _							
9. GROUND TEST OPTION TEST ARTICLE:									
TEST DESCRIPTION/REQUIREMENTS:									
SPECIAL GROUND FACILITIES:									
GROUND TEST LIMITATIONS: The exp	periments cannot be	EXISTING:							
because the container material	s required on the	ground contaminate	the specimens.						
		TEST CONFIDENCE							
10. SCHEDULE & COST SPACE	E TEST OPTION	GROUND TEST	Γ OPTION						
TASK CY	COST (\$		COST (\$)						
1. ANALYSIS									
2. DESIGN									
3. MFG & C/O 4. TEST & EVAL									
TECH NEED DATE		II							
GRAND	TOTAL	GRAND TOTAL							
11. VALUE OF SPACE TEST \$		<u> </u>							
12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY									
COST RISK \$									

NO.	28		
DAC	_	4	

1.	REF. NO.			REV DATE					
		CATEGORY	Structural &	Spacecraft/Mech	anical				
2.	TITLE Adhesive	e Bonding of Large Erecta	ble Structure	es in Space					
3.	TECHNOLOGY ADVANCEMENT REQUIRED LEVEL OF STATE OF ART								
J .		of this program is to de-	CURRENT	UNPERTURBED	REQUIRED				
	velop, evaluate	and demonstrate the mat	er-						
	•	es, processes, and equipm	-						
	_	constituent components o							
	The requirement for long life in the space environment will necessitate the development and evaluation of new adhesive formulations. Actual space demonstrates								
	stration of the developed bonding techniques and equipment will be conducted i								
	orbit outboard suits.	the pallet of the Spacel	ab by experim	menters equipped	with space				
									
4.	SCHEDULE REQ	UIREMENTS FIRST PAYLO	AD FLIGHT DAT	Έ					
	PAYLOAD DEVELO	PMENT LEAD TIME	_YEARS. TECH	INOLOGY NEED DATE					
5.	BENEFIT OF AD	VANCEMENT	NU	IMBER OF PAYLOADS					
	TECHNICAL BENEFITS The advantages offered by adhesive joining over other								
		are, (1) light weight,							
	bility with lightweight non-metallic and metallic structural elements, (4) ease of fabrication and (5) minimal tooling and equipment.								
	ease of fautication and (3) national courting and equipment.								
	POTENTIAL COST BENEFITS								
			ESTIMATED	COST SAVINGS \$					
-	DICK IN TECHNIC	U OOV ADVANOFAFAIT							
6.		LOGY ADVANCEMENT							
	TECHNICAL PROBL	EMS							
	REQUIRED SUPPOR	REQUIRED SUPPORTING TECHNOLOGIESStructures							
7.	REFERENCE DO	CUMENTS/COMMENTS SP	ART Study Rev	oort: OSS. OA 11se	er Inputs				
		mmer Workshop Overview R							
ET (TI	OR-1) 7/75								

TIT	TITLE Adhesive Bonding of Large Erectable Structures											NO. PAG		28		
	COMPARISON OF SPACE & GROUND TEST OPTIONS															
8. SPACE TEST OPTION TEST ARTICLE: Adhesively Bonded Joints																
TEST DESCRIPTION: ALT. (max/min)/ km, INCL deg, TIME								hr								
	BENEFIT OF SPACE TEST: (1) Life test of adhesive joints in space (2) Development and demonstration of bonding techniques									opment						
	EQUIPMENT:	WEIGH	т			kg, S	IZE		_ x	x			ı, POW	ER		kW
	POINTING		_		s	TABIL	ITY _				DA	TA				
													UN _			
	SPECIAL GROUND									-		EX			-	
	CROUND TES	T OD3	FLORE													
9.	GROUND TEST	I OF	IUN		1 5 21 /	AHII	ilt: .							,	-	<u></u>
	TEST DESCRIPTIO	N/RE	QUIRE	MEN	TS:		•									
			· · · · · · · · · · · · · · · · · · ·				 -						· 			
	SPECIAL GROUND	FAC	ILITIE	S:												
												EX	STING	: YES	s 🔲	NO 🔲
	GROUND TEST LIN	TATIN	TIONS:													
										TEOT					<u>-</u> -	
										- 1591	LUN	FIDEN	JE			
10.	SCHEDULE & C	COST	-				ST OP			ļ				ST O		l
7	TASK	CY	76	77	78	79	80	81	COST (\$)	76	77	78	79	80	81	COST (\$)
	1. ANALYSIS 2. DESIGN									-05						.05
	3. MFG & C/O											_	_			-
	4. TEST & EVAL				•05	.2	.3	.2	.75	.05	.1	.1	.1	.2	.2	.75
_	ECH NEED DATE				PAND	TOT	Δ1		75			PANI	L	'ΔΙ	L	90
11	GRAND TOTAL80															
11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$)																
12.	12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY															
	COST RISK \$															

NO	

1.	REF. NO. PREP DATE 8/9/75 REV DATE LTR CATEGORY Structure & Spacecraft/Mechanical						
2.	TLE Long Life Polymeric Protective Coatings for Space Applications						
3.	CHNOLOGY ADVANCEMENT REQUIRED Olymeric protective coatings for solar ells, electronic circuit boards, etc. Other life under actual space conditions are needed in order to assure us the operational lifetimes designed into the orbiting device. The technology polymeric coatings will be advanced by this effort especially for coatings colar cells, thermal) that are directly exposed to the Space environment.						
4.	SCHEDULE REQUIREMENTS FIRST PAYLOAD FLIGHT DATE 1982 PAYLOAD DEVELOPMENT LEAD TIME 3 YEARS. TECHNOLOGY NEED 1 1979						
5.	BENEFIT OF ADVANCEMENT TECHNICAL BENEFITS By using improved protective coatings (better resistance to degradation by the Space environment) the life and efficiency of Solar cells, thermal coatings, circuit boards, etc., will be increased significantly. POTENTIAL COST BENEFITS estimated to be great - 100M ESTIMATED COST SAVINGS \$?						
6.	RISK IN TECHNOLOGY ADVANCEMENT TECHNICAL PROBLEMS Formulation and synthesis of the proper polymer and its evaluations. The space evaluation of the final product is extremely important to assure us about earth testing. REQUIRED SUPPORTING TECHNOLOGIES Analytical instrumentation, i.e., IR Spectroscopy, etc., in chemical labs as well as mechanical listing.						
7.	REFERENCE DOCUMENTS/COMMENTS						

FT (TDR-1) 7/75

PAGE 2 Applications COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: _____ ALT. (max/min) _____/ km, INCL. _____ deg, TIME _____ hr TEST DESCRIPTION: BENEFIT OF SPACE TEST: Confirmation of earth laboratory data & especially long life space test under actual condition EQUIPMENT: WEIGHT 50 kg, SIZE 0.030 X 0.086 X0.127 m, POWER STABILITY DATA POINTING ORIENTATION _____ ____ CREW: NO. ____ OPERATIONS/DURATION _____/ SPECIAL GROUND FACILITIES: _____ clean room _____ EXISTING: YES X NO _____TEST CONFIDENCE 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: Actual space environmental condition-Vacuum, thermal, Zero g, radiation (U.V. & particles), and meteoric bombardment SPECIAL GROUND FACILITIES: all of above EXISTING: YES NO GROUND TEST LIMITATIONS: Simultaneous long time exposure to the above test requirements. TEST CONFIDENCE 0.90 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** 82 83 COST (\$) 78 **79** 80 81 | TASK COST (\$) .03 1. ANALYSIS .04 2. DESIGN .05 3. MFG & C/O .06 .05 4. TEST & EVAL TECH NEED DATE 0.24M GRAND TOTAL **GRAND TOTAL** 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____) 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY

TITLE Long Life Polymeric Protective Coatings for Space

NO. 29

FT (TDR 21 7-75

NO3	0	
PAGE	1	

1.	REF. NO.	PREP DATE	8/9/75	REV DATE	LTR				
		CATEGORY	Structure a	nd Spacecraft/Me	chanical				
2.	TITLE Long Life	Adhesives for Space A	Applications						
									
3.	TECHNOLOGY ADVA	ANCEMENT REQUIRED	LEVEL OF STATE OF ART						
		polymers (adhesives)	CURRENT						
	must be investigated	ted and developed to	3	5	10				
		e adhesives unprotecte							
			conditions of thermal extremes, vacuum,						
	intended propertie		, which is the second s						
	nice property								
İ									
	COLLEGE DE DECLUDE	TATALTO TITLE DAVID		- 1002					
4.	SCHEDULE REQUIRE		AD FLIGHT DAT		1000				
	PAYLOAD DEVELOPMEN	NT LEAD TIME3	_YEARS. TECH	NOLOGY NEED DATE	1980				
5.	BENEFIT OF ADVANCEMENT NUMBER OF PAYLOADS 2								
	TECHNICAL BENEFITS Better adhesives for such items as solar cells and thermal								
	tapes must be dev	eloped for our long 1:	ife orbiting	devices and Luna	r and Mars,				
Landers, etc., in order to assure their success.									
	POTENTIAL COST BENEFITS								
	TOTENTIAL GOOT BEITE								
			ESTIMATED	OST SAVINGS \$					
6.	RISK IN TECHNOLOG		whania of the	. maleman adhasie	es and long				
	TECHNICAL PROBLEMS	Formulating and synt	ronment	polymer aunesiv					
	time testing in a simulated space environment.								
	REQUIRED SUPPORTING	TECHNOLOGIES Chemis	try, space si	mulations testin	ŋ.				
	·								
			·····						
7 .	REFERENCE DOCUM	ENTS/COMMENTS	· · · · · · · · · · · · · · · · · · ·						
	The state of the s		· · · · · · · · · · · · · · · · · · ·						

														PAG	E	2
		C	OMPA	RISC	ON O	F SP/	ACE 8	GR	OUND TE	ST C	PTIC)NS				
8.	SPACE TEST (OPTIC	ON	1	rest .	ARTIC	CLE: .	L	ong lị	fe r	oly	mer.	ic a	dhe	sive	es
																
	TEST DESCRIPTIO	on:	A	LT. (m	ax/min) _		_/_	k	m, INC	SL			deg, Ti	IME _	hr
	BENEFIT OF SPAC			Act	ual	test	ing :	in t	ne space	env	iron	ment	and	post	exa	mina
	EQUIPMENT:	WEIGH	IT	3	0	kg, S	IZE O	003	X 0.86	x	1,2	7 r	n, POW	ER _	0	kW
	POINTING															
	ORIENTATION SPECIAL GROUND							NO.	OPI	ERATI	ONS/D	URAT	ION _			
	SI ECIAL GROUND	PAC		_								FY	ISTIN	G: YE	s V	No [7]
9.	GROUND TES	T OP	rion		ΓEST	ARTI	CLE:	Lor	g life	poly	meri	c adl	hesi	ves		<u> </u>
	long term (TS: _	Si	mulat	ted s	space en	vira	nnen	<u>t </u>	· · ·			
														· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	SPECIAL GROUND) FAC	ILITIE	S:												
												EX	ISTIN	3: YE	s \Box	NO X
	GROUND TEST LI							wire	nment i	nclu	ding	Zero	<u>5-g</u>	and f	ull	
	radiation fo	DL TC	ng t	enu	(1-3	yea	rs)		·	TEC	T CON	FIDEN	<u> </u>	^ -		
										. 169	CUN	FIDEN	UE	0.3		
10.	SCHEDULE & (SPAC		ST OP	TION		<u> </u>		ROU	ND TI	EST O	PTION	l
T	ASK	CY	77	78	79	80	82	83	COST (\$)	<u> </u>	<u> </u>					COST (\$)
	1. ANALYSIS 2. DESIGN		.03	.02							•					
	3. MFG & C/O				.02	.03		مد								
	4. TEST & EVAL			L		•05		.06]
	ECH NEED DATE		-		BANG	тот		<u> </u>	0.24M		L	D ANG				
4.4	\/A\\\\ 05.05.05			===					0.241	<u></u>		RANI	- 101	AL		<u></u>
11.	VALUE OF SPA	ICE T	EST	\$					(SUM OF	PROG	RAM	COST	s \$ _			.)
12.	DOMINANT RI	SK/TI	ECH F	PROB	LEM					C	OST	MPAC	CT	P(ROBA	BILITY
	COST RISK \$															

NO.

30

TITLE Long Life Adhesives for Space Applications

NO.	31
	- 4

1.	REF. NO. PREP DAT		3/9/75 Structures	REV DATEand Spacecraft/N	LTR				
2.	TITLE <u>High Temperature High Thermal</u>	Condi	ctivity Po	lymers for Space	Application				
3.	TECHNOLOGY ADVANCEMENT REQUIRE	D	LEVEL OF STATE OF ART						
	Advancement in high temperature		CURRENT	UNPERTURBED	REQUIRED				
	(>300 degree range) high thermal		3	5	10				
	conductivity polymer chemistry will								
	chemistry must formulate and synthes goals.	size (menucal su	ructures to achi	leve these				
,									
4.	SCHEDULE REQUIREMENTS FIRST PAY	/LOAD	FLIGHT DATE	1982					
	PAYLOAD DEVELOPMENT LEAD TIME 3YEARS. TECHNOLOGY NEED DATE 1980								
5.	BENEFIT OF ADVANCEMENT		NUN	MBER OF PAYLOADS	2				
	TECHNICAL BENEFITS Mechanisms and devices can be operated at high temperatures								
	and operate more efficiently.								
			3.1 · · · · · · · · · · · · · · · · · · ·						
	POTENTIAL COST BENEFITS Much								
			· · · · · · · · · · · · · · · · · · ·						
			50511115						
			ESTIMATED C	OST SAVINGS \$					
6 .	RISK IN TECHNOLOGY ADVANCEMENT								
	TECHNICAL PROBLEMS Polymer chemistry has to investigate the problem by								
	structural chain changes and modifications, or by the filling of polymers with various thermal conducting substances.								
	With Various distance out the same								
	REQUIRED SUPPORTING TECHNOLOGIES POL	lymer	chemistry a	and space simula	tion testing				
			-						
			· · · · · · · · · · · · · · · · · · ·						
7.	REFERENCE DOCUMENTS/COMMENTS				-				
, .	TELETICIE DOCUMENTS/COMMENTS								

FT (TDR-1) 7/75

TITLE High Temperature High Thermal Conductivity Polymers for NO. 31 Space Application PAGE COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: Polymers-High Temperature-High Thermal conductivity TEST DESCRIPTION: ALT. (max/min) _____ / ___ km, INCL. deg, TIME hr BENEFIT OF SPACE TEST: Confirm laboratory results and to improve knowledge of polymer selection WEIGHT 50 kg, SIZE 0.03 X 0.86 X 1.27 m, POWER -0-EQUIPMENT: POINTING ______ STABILITY _____ DATA ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION / SPECIAL GROUND FACILITIES: Clean room _____ EXISTING: YES K NO _____TEST CONFIDENCE 0.90 9. GROUND TEST OPTION TEST ARTICLE: Polymers - High Temperature High Thermal conductivity. TEST DESCRIPTION/REQUIREMENTS: Actual stace environment for long term exposure. SPECIAL GROUND FACILITIES: EXISTING: YES NO X GROUND TEST LIMITATIONS: Above long term facility. TEST CONFIDENCE 0.3 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** TASK CY COST (\$) 78 | 79 80 | 81 | 82 | 83 COST (\$) 0.03 0.02 1. ANALYSIS 0.0B 2. DESIGN 0.03 3. MFG & C/O 0.04 0.04 4. TEST & EVAL TECH NEED DATE **GRAND TOTAL GRAND TOTAL** 0.19M11. VALUE OF SPACE TEST \$ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY

(1 (1DR 2) 7.75

COST RISK \$

1

NO.	32		
040		4	

				10 Mc		
1.	REF. NO.	PREP DATE CATEGORY	_ 8/ _ Si	tructural s	REV DATE Spacecraft/Mech	LTR
2.	TITLE Improved Elec	trical Conductivity	, O	Polymers	for Space Applic	cation.
3.	TECHNOLOGY ADVANG	CEMENT REQUIRED		L	EVEL OF STATE OF	ART
-	Advancement in poly	· · · - ·		CURRENT	UNPERTURBED	REQUIRED
	increase the electr	ical conductivity	-	2	3	10
	of the polymer by m	olecular structure	ch	ange or ado	ition of electri	cal
	conducting substance	es.				
-		 -				
4.	SCHEDULE REQUIREM			FLIGHT DAT		
	PAYLOAD DEVELOPMENT	LEAD TIME3	Y	EARS. TECH	NOLOGY NEED DATE	1983
5.	BENEFIT OF ADVANCE	MENT		NU	MBER OF PAYLOADS	2
	TECHNICAL BENEFITS	Improved electrical	. α	onductivity	of external coa	ating will
	allow better contro	l of space charges	anx	d in ground	ing of boxes and	d other
	applications where	electrical conducti	On	18 necessa	Ty.	
İ						
	POTENTIAL COST BENEFIT	S				
				ESTIMATED (OST SAVINGS \$	
6.	RISK IN TECHNOLOGY	ADVANCEMENT				
	TECHNICAL PROBLEMS	Polymer Chemistry m	ay	not be abl	e to rearrange t	the
i	molecular structure					been
	made in using speci	fic electrical cond	luc	ting filler	'S.	
	REQUIRED SUPPORTING TO	rounou coura Chemist	·~·	laborator	v testing	
i	REQUIRED SUPPORTING TO	ECHNOLOGIES CHEIRE	<u>- y</u>	, landedou	y, cesting.	
7 .	REFERENCE DOCUMEN	TS/COMMENTS				
			_			
T (T)	OR 11 7/75					

TIT	LE Improved Application		tric	al C	ondu	ctiv	ity	of Po	olymers	ior (Spac	е		NO. PAG		2
		CC	 MPA	RISC	ON O	F SPA	ACE 8	& GR	OUND TE	ST O	PTIC	ONS				
8.	SPACE TEST (lymeric m							
							<u> </u>				· - ·	•				
	TEST DESCRIPTIO	N:	AI	LT. (m	ax/min)		_/	kı	m, INC)l.,			deg, TI	ME _	hr
	BENEFIT OF SPACE TEST: To determine if the coating will perform predicted in the space environment.															
	EQUIPMENT:															kw
	POINTING															
	ORIENTATION SPECIAL GROUND							NU,	UPE	:HAIII	UNS/U	UHAI	IUN _			
				J										G: YES		NO 🗌
_	CDOUND TEC	T () () ()	TION!			4071		~].m	·			201111				
9.	GROUND TES	I UF	ION		IESI .	AHII	CLEF	OTŽII	ELIC MAD	EL IA	12					
	TEST DESCRIPTION Charges.	N/RE	QUIRE	MEN	TS: _	Spa	ce e	nvir	onment i	nclu	ding	ele	ctri	cal -	- st	atic
	SPECIAL GROUND	FACI	LITIE	S:	Spa	ce s	imul	ated	environ	ment	inc	ludi	ng e	lecti	ica	L
												EX	ISTIN	G: YES	;	NO K
	GROUND TEST LI	MITAT	'IONS:		abov	'e	 									
										TEST	CON	FIDEN	CE			
10	SCHEDULE & (רפד			PAC	'E TE	ST OP	TION				SPOU	ND T	EST OF	TION	
	ASK	CY	70	00				7	COST (\$)	-	`	I	1			1
'	1. ANALYSIS	[0]	79	80 0.04		82	83	841	COST (3)	-	<u> </u>		 			COST (\$)
	2. DESIGN			p. 02]					İ	:				
	3. MFG & C/O				0.03	0.0		0.04								
	4. TEST & EVAL												<u> </u>			
_1	ECH NEED DATE						<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u></u>			
				G	RAND	TOT	AL		0,24		G	RAN	וסד ט	AL		
11.	VALUE OF SPA	CE T	EST :	\$					(SUM OF	PROG	RAM	COST	'S \$ _	-		.)
12.	DOMINANT RI	SK/TI	ECH F	ROB	LEM					_	COST	IMPA	СТ	P	ROBA	BILITY
	COST RISK \$,	··

NO.	33		
DAG	_	1	

1.	REF. NO.	PREP DATE 8/	9/75 ructural an	REV DATE d Spacecraft/Med	LTR
1	TITLE Detembion of Ti-				
2.	TITLE Retention of Lic Environment Under Pass		Passive mea	ns in the space	
-					
3.	TECHNOLOGY ADVANCE			EVEL OF STATE OF	
	To better understand t		CURRENT	UNPERTURBED	REQUIRED
}	surface tension barrie		5	5	10
	labyrnith seals in the creep and evaporation.	This experiment	ion of the	loss of lubricar	ts by
	and seals by being abl	_		•	
Ĭ	flight.				
l					
1					·
İ					
				1000	
4.	SCHEDULE REQUIREMEN		FLIGHT DAT	E	
	PAYLOAD DEVELOPMENT LEA	AD TIME	EARS. TECH	NOLOGY NEED DATE	1976
5.	BENEFIT OF ADVANCEME	:NT			2
-	TECHNICAL BENEFITS Ret		וטא id lubrican	MBER OF PAYLOADS	of great
	importance in order th	nat the mechanism d	oes not fai	I mechanically a	nd adjacent
	sensitive instruments	are not contaminat	ed.		
!					
					
	POTENTIAL COST BENEFITS as some instruments ha				
	year lifetimes are now	v planned. Mechani	sms will be	able to operate	until
	power fails		ESTIMATED O	OST SAVINGS \$	OM
6.	RISK IN TECHNOLOGY AU	VANCEMENT			
	TECHNICAL PROBLEMSAt	this time, no tec	hnical prob	lems are foresee	n.
		Ontion		abanian) analus	in failum
	REQUIRED SUPPORTING TECH analysis.	INOLOGIES OPETCAL	increscopy,	CIRCUIT ANALYS	18, Idilute
	aratysts.				
7.	REFERENCE DOCUMENTS	/COMMENTS			
•	THE TOCOMEN 13	COMMEN 19			
			·		
ET (Tr	OR 1) 7:75				

. .

PAGE Space Environment Under Passive Conditions COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: _____ ALT (max/min) _____/ km, INCL. _____deg, TIME _____ hr TEST DESCRIPTION: BENEFIT OF SPACE TEST: To evaluate the effect of Zero g on the creep of liquids and the use of the barrier film to reduce the creep. WEIGHT 50 kg, SIZE <u>.03</u> X <u>.40</u> X <u>.45</u> m, POWER <u>0</u> kW EQUIPMENT: STABILITY ______DATA__ POINTING ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION ______/ SPECIAL GROUND FACILITIES: EXISTING: YES X NO test confidence 0.90 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: Space environment including Zero g. SPECIAL GROUND FACILITIES: Zero g capability EXISTING: YES NO X GROUND TEST LIMITATIONS: Cannot get Zero g conditions on ground TEST CONFIDENCE 0.90 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** CY 76 77 78 79 80 81 COST (\$) COST (\$) TASK 1. ANALYSIS .02 .03 2. DESIGN .10 3. MFG & C/O .05 4. TEST & EVAL TECH NEED DATE **GRAND TOTAL GRAND TOTAL** 0.2M 11. VALUE OF SPACE TEST \$ 0.2M (SUM OF PROGRAM COSTS \$ _____ COST IMPACT PROBABILITY 12. DOMINANT RISK/TECH PROBLEM

TITLE Retention of Liquid Lubricants by Passive Means in the

NO. 33

11 (TDR 21775)

NO.	34	
PAG	C 1	

1.	REF. NO. PREP DATE 8/9/75 REV DATE LTR LTR
	CATEGORY Structures & Spacecraft/Mechanical
2.	TITLE Retention of Liquid Lubricants "in Place" Under Dynamic Conditions
١.	Using Barrier Films and Labyrnith Seals
_	TECHNOLOGY ADVANCEMENT REQUIRED LEVEL OF STATE OF ART
3.	Indication of Mechanical components has CURRENT UNPERTURBED REQUIRED
	advanced to the state where-in a Minimum 5 5 10
	quantity of lubricant is used, this quantity cannot be lost to space or contam-
	inale sensitive devices. This experiment is set up to better confirm the use
	of barrier films and labyrnith seals to prevent the loss of the liquid lubri-
	cants by creep/evaporation under concitions of rotary motion and Zero g.
	1000
4.	SCHEDULE REQUIREMENTS FIRST PAYLOAD FLIGHT DATE 1980
<u> </u>	PAYLOAD DEVELOPMENT LEAD TIME
5.	BENEFIT OF ADVANCEMENT NUMBER OF PAYLOADS 2
3.	TECHNICAL BENEFITS Retention of the lubricant "In Place" under dynamics con-
	ditions is a must in order to prevent mechanical failure and contamination of
	sensitive instruments. Very small quantities of lubricants are now being
	employed and they cannot be lost by creep/evaporation.
	POTENTIAL COST BENEFITS The operational lifetime of S/C instruments will be
	more assured if the barrier films and labyrnith seals do function as expected.
	ESTIMATED COST SAVINGS \$ 100M
6.	RISK IN TECHNOLOGY ADVANCEMENT
	TECHNICAL PROBLEMS No technical problems exist at this time in the use of these films and seals
	Crese line and seals
	REQUIRED SUPPORTING TECHNOLOGIES Optical microscopy, chemical analysis, failure analysis.
	augiyoto.
,	DESERVACE DOCUMENTS/COMMENTS
7.	REFERENCE DOCUMENTS/COMMENTS
	20.11.2775

Conditions Using Barrier Films and Labyrnith Seals PAGE COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: ALT. (max/min) ______ / km, INCL_ deg, TIME _____ hr TEST DESCRIPTION: BENEFIT OF SPACE TEST: To evaluate the use of the barrier film and labyrnith seals in the Zero g field on creep/evaporations of liquid Lubricants. ECOIPMENT: WEIGHT 50 kg, SIZE 03 X 40 X 45 m, POWER 0.005 kW _____STABILITY ______DATA___ POINTING ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION ____ SPECIAL GROUND FACILITIES: Clean Room EXISTING: YES X NO _____TEST CONFIDENCE 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: Space environment including Zero q SPECIAL GROUND FACILITIES: Zero g capability EXISTING: YES NO GROUND TEST LIMITATIONS: Zero g capability TEST CONFIDENCE 0.90 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** 81 (COST (\$) CY TASK 78 79 80 COST (\$) .02 1. ANALYSIS .03 2. DESIGN .10 3. MFG & C/O .05 4. TEST & EVAL TECH NEED DATE 0.2M **GRAND TOTAL GRAND TOTAL** 11. VALUE OF SPACE TEST \$ 0.2M (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY COST RISK \$

TITLE Retention of Liquid Lubricants "In Place" Under Dynamic NO.

34

FT (1DR 2) 7-75

NO. <u>3 5</u> PAGE 1

1.	REF. NOPREP DATE	8,	/9/75	REV DATE d Spacecraft/Med	LTR	
	CATEGORY		ructure an	n spacecrart/Me	nancar	
2.	TITLE Effects of the Space Environment	a	the Prope	erties of Specifi	ic Polymers.	
3.	TECHNOLOGY ADVANCEMENT REQUIRED	LEVEL OF STATE OF ART				
	Knowledge of the combined effects of the space environment on the properties	_	CURRENT 5	UNPERTURBED 5	REQUIRED 10	
	of specific/most used polymeric materia		L	L		
	selection and earth laboratory data.	Th:	ls experime	at will be evalu	nated after	
	space flight, 1-3 years, to determine and to show which polymers is correct	if and	our select	tions of polymers ymers should be	improved.	
	Polymer chemistry will be advanced.					
		•				
4.	SCHEDULE REQUIREMENTS FIRST PAYLO	AD	FLIGHT DAT	E 1980		
	PAYLOAD DEVELOPMENT LEAD TIME1	_Y	EARS. TECH	NOLOGY NEED DATE	1978	
5.	BENEFIT OF ADVANCEMENT		NU	MBER OF PAYLOADS	2	
	TECHNICAL BENEFITS Knowledge confirming materials are planned. This long dura	g (our past se on Space ex	election of polym posure will alk	meric ow us to	
	actually measure some properties of po					
	POTENTIAL COST BENEFITS					
			FOTIMATED	2007 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			ESTIMATED	COST SAVINGS \$		
6.	RISK IN TECHNOLOGY ADVANCEMENT	4-4		in Conso then	improved	
	TECHNICAL PROBLEMS _ If the polymers do opolymers are needed. If they do not do					
	life (7-10 years) polymer chemistry mu	st	be looked	at.		
	REQUIRED SUPPORTING TECHNOLOGIES Polym	er	Chemistry.			
		_				
7.	REFERENCE DOCUMENTS/COMMENTS					
						

Specific Polymers. PAGE COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: Polymeric Materials ALT. (max/min) / km, INCL. deg, TIME hr TEST DESCRIPTION: BENEFIT OF SPACE TEST: Assurance of our proper selection of the various polymeric materials and space applications. EQUIPMENT: WEIGHT 60 kg, SIZE 0.03 X 0.86 Y 1.27 m, POWER 0 STAEILITY _____ POINTING_ DATA ORIENTATION _____ CREW NO. _ ___ OPERATIONS/DURATION ____ SPECIAL GROUND FACILITIES: Clean room EXISTING: YES K NO _____ TEST CONFIDENCE .90 9. GROUND TEST OPTION TEST ARTICLE: Polymeric Materials TEST DESCRIPTION/REQUIREMENTS: Long term (1-3 years) exposure to the actual space environment. SPECIAL GROUND FACILITIES: Actual space environment exposure facilities - long term exposure. ____EXISTING: YES NO XX GROUND TEST LIMITATIONS: Actual space environment exposure facility for long term duration. TEST CONFIDENCE 0.3 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION TASK** 77 78 79 80 COST (\$) 76 COST (\$) .03 0.0B 1. ANALYSIS **b.03** 2. DESIGN b.02 0.0B 3. MFG & C/O 0.05 0.09 4. TEST & EVAL TECH NEED DATE **GRAND TOTAL GRAND TOTAL** 0.24M 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/FECH PROBLEM COST IMPACT PROBABILITY COST RISK \$

TITLE Effects of the Space Environment on the Properties of

NO. 35

11 (1DR.2) 7.75

NO	36
PAGE	1

1.	REF. NO.	PREP DATE	8,	/11/75	REV DATE lectronis	LTR
ļ						
2.	TITLE Space Rep	pair of Polymers in Ele	cti	ronic Assem	blies	
3.	TECHNOLOGY ADV	ANCEMENT REQUIRED		L	EVEL OF STATE OF	ART
ļ	The objective of	this program is to		CURRENT	UNPERTURBED	REQUIRED
1		onstrate the materials,		<u> </u>		
	methods, and equand for potting	nipment appropriate for to repair electronic a	sse	ne applicat	ion of conforma. the space enviro	coatings
		ill have to be performe				
	essarily compati	ble with presently ava	ila	able materi	als and procedu	es developed
1	•	ions. Gravity will no		-		•
ĺ		Volatile components of erious changes in compo				
4.	SCHEDULE REQUIF	REMENTS FIRST PAYLO	AD	FLIGHT DATI	E	
	PAYLOAD DEVELOPM	ENT LEAD TIME	Y	EARS. TECH	NOLOGY NEED DATE	<u> </u>
5.	PENEELT OF ADVA	NICEMENT				
5.	BENEFIT OF ADVA				MBER OF PAYLOADS	
	TECHNICAL BENEFITS					
	POTENTIAL COST BEN	IEFITS				
l						
				ESTIMATED (COST SAVINGS \$	
6.	RISK IN TECHNOLO	DGY ADVANCEMENT				
	TECHNICAL PROBLEM	s		-		
ļ						
	REQUIRED SUPPORTI	NG TECHNOLOGIES				
7.	REFERENCE DOCU	MENTS/COMMENTS				
L					······································	

FT (TDR-1) 7/75

TIT	TLE Space Repair of Polymers in Electronic Assemblies NO. 36 PAGE 2															
		cc	MPA	RISC	ON O	F SPA	ACE 8	k GR	OUND TE	ST O	PTIC					
8.	SPACE TEST C	PTIC	N	7	TEST A	ARTIC	CLE: _									
	TEST DESCRIPTIO)N:	Al	LT. (m	ax/min)		_/_	k	m, INC	L			deg, Ti	ME	hr
BENEFIT OF SPACE TEST:																
	EQUIPMENT: POINTING ORIENTATION				S	TABIL	.ITY				DA	TA				
ORIENTATION CREW: NO OPERATIONS/DURATION / SPECIAL GROUND FACILITIES: EXISTING: YES NO [
9.	GROUND TES	Т ОРТ	ION	•	FEST	ARTI	CLE: _						<u> </u>	······································		
	TEST DESCRIPTIO	N/RE	QUIRE	MEN	TS: _											
	SPECIAL GROUND	FACI	LITIE													
	GROUND TEST LI	MITAT	IONS	:										3: YES	· 🗆	NO _
				· — · - · ·	****	- ,				TEST	CON	FIDEN	CE			
10.	SCHEDULE & C	COST			SPAC	E 1E	ST OP	TION						EST OF	PTION	
T	TASK	CY	76	77	78	79	80	81	COST (\$)	76	77	78	79	80	81	COST (\$)
	1. ANALYSIS 2. DESIGN									.02	.02					.04
-	3. MFG & C/O 4. TEST & EVAL ECH NEED DATE		i i				.1	.1	.2	.03	.03	.01		.02	.02	.11
				G	RAND	тот	AL		.2		G	RAND	701	AL		.15
11.	VALUE OF SPA	CE T	EST :	\$					(SUM OF	PROG	RAM	COST	s \$ _			.)
12. DOMINANT RISK/TECH PROBLEM									COST IMPACT PROBABILITY					BILITY		
	COST DISK 6	-														

NO. <u>43</u> PAGE 1

1.	REF. NO.	PREP DATE		REV DATE	LTR					
		CATEGORY								
2.	TITLE Long T	Term Space Exposure of Compos	ite Materi	als						
3.	TECHNOLOGY	ADVANCEMENT REQUIRED	L	EVEL OF STATE OF	ART					
	Long term rel	liability of present and	CURRENT	UNPERTURBED	REQUIRED					
	advanced comp	posite materials exposed to								
		vironment will be established fuctures for long duration sp								
	effects as U	radiation and long term out	gasing of	polymeric matrix	composites					
	and the them	mal degradation of metallic m	atrix comp	osites must be e	established.					
i										
4.	SCHEDULE REC	QUIREMENTS FIRST PAYLOAD	FLIGHT DATI	E						
	PAYLOAD DEVEL	OPMENT LEAD TIMEY								
				TOTOG! NEED DATE						
5.	BENEFIT OF A	DVANCEMENT	NU	MBER OF PAYLOADS						
		FITS <u>The better capability</u>								
		etal and polymeric matrix, pration space exposure.	resent and	advanced composi	te materials					
	TOT TORY GUIZ	ictur space exposure.								
										
	POTENTIAL COST	BENEFITS								
			ESTIMATED O	COST SAVINGS \$						
6.	RISK IN TECHN	OLOGY ADVANCEMENT								
	TECHNICAL PROB	LEMS								

	REQUIRED SUPPORTING TECHNOLOGIESComposite materials development.									
	REGUINED SUPPO	Tring rechivologies Compos	ite materi	ars development.						
7 .	REFERENCE DO	DCUMENTS/COMMENTS								
	00 11 7/76									

144

T17	LE Long Te	erm Spa	ce Expo	sure of	Comp	osite	Mater	ials			NO PAGE		
		COM	IPARISO	N OF SPA	ACE 8	GRO	UND TE	EST O	PTION	<u></u>	·····		
8.	SPACE TEST (radiation fo	PTION	TE	ST ARTIC	CLE	Var	iable e	xposu	re of	UV an	i them	al	
	TEST DESCRIPTIO	N:	ALT. (max	c/min)		_/		km, INCI	L		deg, TIME		hr
	BENEFIT OF SPACE	E TEST:	Reali	stic ex	posu	re to	servic	e env	rironm	ent.			
	EQUIPMENT:	WEIGHT		kg, S	SIZE		x	x		m, POW	ER		_kW
	POINTING			STABIL	LITY _				DATA				
	ORIENTATION									ATION _			
	SPECIAL GROUND	PACILI											NO 🔲
9.	GROUND TES	T OPTIC	ON TI	EST ARTI	CLE:								
	TEST DESCRIPTIO	N/REQU	IIREMENT	S:									
	SPECIAL GROUND	FACILI											
	COOLING TEAT I									EXIST!N	G: YES [_	NO 🗀
	GROUND TEST LIF	WITATIC											
								TEST	CONFID	ENCE _			
10.	SCHEDULE & C	COST	,	SPACE TE	ST OP	TION			GR	DUND T	EST OPT	ON	
T	ASK	CY					COST (\$)					7	COST (\$)
	1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL ECH NEED DATE												
			GR	AND TOT	AL	1		 	GRA	AND TO	ΓAL.	十	
11.	VALUE OF SPA	CE TES	ST \$				(SUM OF	PROG	RAM CC	OSTS \$ _			
12.	12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY								ILITY				
	COST RISK \$									······································		<u>-</u>	<u> </u>

NO.	44	
PAG	C 1	

$\overline{}$					
1.	REF. NOPREP DATE	<u>_8/</u>	11/75	REV DATE	LTR
	CATEGORY	<u>La</u>	rge contro	llable, light we	eight
<u> </u>	CATEGORY structures, very long life components/ TITLE Effects of Space Environmental	SYS	tems	Adams and Therete	
2.	III_E Effects of Space Environmental.	LII	ects on ra	tique and Fractu	re or
١.	Advanced Filamentary Composite Structu	raı	Materials		
				51151 05 05 155 05	
3.	TECHNOLOGY ADVANCEMENT REQUIRED		L	EVEL OF STATE OF	AKI
	Determine effects of long time two/		CURRENT	UNPERTURBED	REQUIRED
	high earth orbit space exposure fatigu	_			
	and fracture of composite materials.	Des	elon innut	s for develormer	t of life
	prediction models for very long life s			_	
ŀ	<u> </u>	pac	e applicat	TOIS HIVOTVING I	.19110
	weight structures.				
į .					
İ					
ĺ					
}					
<u> </u>				 	
4.	SCHEDULE REQUIREMENTS FIRST PAYLO		FLICHT DAT	- 1979	
₩.					3005
	PAYLOAD DEVELOPMENT LEAD TIME1	Y	EARS. TECH	NOLOGY NEED DATE	1985
-					
5.	BENEFIT OF ADVANCEMENT		NU	MBER OF PAYLOADS	5-10
	TECHNICAL BENEFITS (1) Potentially larg	Δ τ.			
	structures.	- "	ergiic savi	ings in inige etc	- Cabic
	(2) Greater structural reliability in	V/C	ery long 11	fe applications.	
	(2) General School of International Internat			— — — — —	<u> </u>
	POTENTIAL COST BENEFITS				
•	- TOTELLINE COOL BEITELING				
			ESTIMATED (COST SAVINGS \$	high
6.	RISK IN TECHNOLOGY ADVANCEMENT				
0.	HISK IN TECHNOLOGY ADVANCEMENT				
	TECHNICAL PROBLEMS				
					
					
			 		
	REQUIRED SUPPORTING TECHNOLOGIES Compo	sit	e material	s development	
					
					·
7.	REFERENCE DOCUMENTS/COMMENTS				

146

TITLE Effects of Space Environmental Effects on Fatigue and Fracture NO. 44

of Advanced Filamentary Composite Structural Materials PAGE 2

		C	OMPA	RISC	ON O	F SP	ACE 8	k GR	OUND TE	EST O	PTIC	NS_		COMPARISON OF SPACE & GROUND TEST OPTIONS						
8.	8. SPACE TEST OPTION TEST ARTICLE: Composite material elemental fracture and fatigue specimens																			
	Expose elementation au BENEFIT OF SPACE	ental const nd ar	ant . alys:	cime load is.	ns t and	o lo und	w/hicer c	h ea clic	rth orb	it s nd sa	pace ubsec	env: quen	ironn t gro	nent :	with	out				
	EQUIPMENT: POINTING ORIENTATION SPECIAL GROUND				S	TABIL	.ITY _				DA	TA								
								" .						3: YES		NO 🗌				
9.	GROUND TES				TEST	ARTI	CLE:	Comp	osite m							e and				
	TEST DESCRIPTION/REQUIREMENTS: Expose specimens to combinations of hard vacuum, high intensity UV radiation, and simulated micrometeorid impact and determine effects on residual properties. SPECIAL GROUND FACILITIES: High vacuum chambers, High intensity UV radiation sources, high velocity particle accelerators																			
	GROUND TEST LI	MITA	rions:	Re	alis	tic (envi	conne	nt inte	racti	ion i	E^ inacl	nieva	ble	· [X]	NO 🔲				
										TEST	CUNI	FIDEN	CE	.9						
10.	SCHEDULE & (COST	<u> </u>		SPAC	E TE	ST OP	TION			G	ROU	ND TE	ST OP	TION					
1	rask	CY	78	79	80	81	82	83	COST (\$)							COST (\$)				
	1. ANALYSIS 2. DESIGN 3. MFG & C/O 4. TEST & EVAL ECH NEED DATE		.035 .07 .2	.1	.1	.1	.1	.1	.035 .07 .2	.0:		.03				.035 .07 .2 .06				
				G	RAND	тот	AL		.8M		G	RAN	тот	AL		.35 M				
11.	VALUE OF SPA	CE T	EST S	<u> </u>					(SUM OF	PROG	RAM	COST	s \$)				
12.	DOMINANT RI	SK/T	ECH P	ROB	LEM					C	OST	MPA	CT	PF	ROBA	BILITY				
					*** <u>*</u>		"				, -									
	COST RISK \$																			

NO	49	
PAGE	1	

CATEGORY		LTR									
2. TITLE Development of Directionally Solidified Eutectic Com	pounds i	n Space									
3. TECHNOLOGY ADVANCEMENT REQUIRED LEVEL OF	STATE OF	ART									
	TURBED	REQUIRED									
fibrous phase, that is, fewer defects	fibrous phase, that is, fewer defects										
in the eutectic structure, by solidification in low gravit											
metallic superalloy (e.g. nickel-columbrium) eutectic compounds for high											
strength jet engine turbine blades or optical salts or gla laser windows. The reduced convection of the molten mater	strength jet engine turbine blades or optical salts or glassy compounds for laser windows. The reduced convection of the molten material, and the										
quiescient conditions of spacecraft in orbit are considered to be benefic											
to the achievement of this objective.											
	<u> </u>										
10	90										
4. SCHEDULE REQUIREMENTS FIRST PAYLOAD FLIGHT DATE											
PAYLOAD DEVELOPMENT LEAD TIME YEARS. TECHNOLOGY	NEED DATE	1980									
5. BENEFIT OF ADVANCEMENT NUMBER OF	PAVI NADS	9									
TECHNICAL DENEFITS Directionally solidified eutectics currently in development											
on earth for increasing uniaxial strength in aircraft turbine blades and											
fastrers are limited. The rod-like reinforcing phase is not continuous but											
has defects due to disturbances from convection while solidifying. It is											
believed that a more nearly perfect structure could be pro	believed that a more nearly perfect structure could be produced in low gravity.										
POTENTIAL COST BENEFITS <u>Economic studies indicate that this work could save</u> vast amounts of fuel and money in the aircraft industry.											
ESTIMATED COST SAV	ESTIMATED COST SAVINGS \$ 100,000,000.00										
6. RISK IN TECHNOLOGY ADVANCEMENT											
TECHNICAL PROBLEMS											
TECHNICAL PROBLEMS											
REQUIRED SUPPORTING TECHNOLOGIES											
7 DESERVATION DOCUMENTO/OCAMATAITO											
7. REFERENCE DOCUMENTS/COMMENTS											
											

In Space PAGE COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: Materials Processing Spacelab TEST DESCRIPTION: ALT. (max/min) 240 / 180 km, INCL. any deg, TIME 200 hr BENEFIT OF SPACE TEST: Must provide low gravity EQUIPMENT: WEIGHT 150 kg, SIZE 0.6 X 0.4 X 0.2 m, POWER 20 STABILITY DATA POINTING ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION _____/ SPECIAL GROUND FACILITIES: ____ EXISTING: YES NO ____ TEST CONFIDENCE __ 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: SPECIAL GROUND FACILITIES: EXISTING: YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION GROUND TEST OPTION CY | 76 77 78-9 80 91 82 | COST (\$) TASK COST (S) 200k 1. ANALYSIS 400k 2. DESIGN 1400k 3. MFG & C/O 500k 4. TEST & EVAL TECH NEED DATE **GRAND TOTAL GRAND TOTAL** 2500k 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY COST HISK \$

TITLE Development of Directionally Solidified Extectic Compounds NO. 49

NO.	_50		
PAG	F	1	

1.	REF. NO.	PREP DATE		REV DATE	LTR					
		CATEGORY								
2.	TITLE Contain	nerless Casting and Shaping	of Reactiv	e <u>Metals in Spac</u>	e					
3.	TECHNOLOGY A	DVANCEMENT REQUIRED	L	EVEL OF STATE OF	ART					
	Develop electi	ramagnetic, electro-	CURRENT	UNPERTURBED	REQUIRED					
		and acoustic levitation			Ĺ					
		quipment, aided by low gravi			e reactive					
	metals and cei	ramics without molds, crucil	ores or orn	er containers.						
										
	·····									
				1000						
4.	SCHEDULE REQU	UIREMENTS FIRST PAYLOAD	FLIGHT DATE	1980						
	PAYLOAD DEVELO	PMENT LEAD TIME5Y	EARS. TECHI	NOLOGY NEED DATE	1984					
5.	BENEFIT OF AD			MBER OF PAYLOADS						
	TECHNICAL BENEF	ITS Many special metal requ	irements a	re not being fil	.led					
	currently became	ause metals and ceramics rea iner. The production of rik	obon "extru	e mold, crucible	or rale					
		ich the wafer could be cut o								
	from a rod lib	ke salami would be a major a	advancement	to electronics	if the flat					
			urbed. Tu	ngsten x-ray tar	gets and					
		filaments need high	er purity	for longer life	and safety					
	as do thermoio	onic devices for energy proc	for energy production and control.							
	POTENTIAL COST	T HENEFITS - Reduces a of scrap and surface etching	ESTIMATED O	cost savings \$50,0 onductors.	00,000.00					
6.	RISK IN TECHNO	LOGY ADVANCEMENT								
	TECHNICAL PROBL	EMS								
	REQUIRED SUPPOF	RTING TECHNOLOGIES								
7.	REFERENCE DO	CUMENTS/COMMENTS								

FT (TDR 1) 7/75

TITLE <u>Containerless Casting and Shaping of Reactive Metals in</u> NO. <u>50</u> Space PAGE 2 COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: Materials Test Spacelab ALT. (max/min) 240 / 180 km, INCL. any deg, TIME any hr TEST DESCRIPTION: BENEFIT OF SPACE TEST: Provide low gravity environment EQUIPMENT: WEIGHT 100 kg, SIZE 1 X 1 X 1 m, POWER 10 POINTING_ _____STABILITY ____ DATA ORIENTATION _____ CREW: NO. ___ OPERATIONS/DURATION _____/ SPECIAL GROUND FACILITIES: EXISTING: YES NO _____TEST CONFIDENCE 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: SPECIAL GROUND FACILITIES: ____EXISTING: YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** CY | 77 | 78 | 79 | 80 | 81 | 82 | COST (\$) TASK COST (\$) 300k 1. ANALYSIS 400k 2. DESIGN 11800k 3. MFG & C/O 1000k 4. TEST & EVAL TECH NEED DATE B500k GRAND TOTAL **GRAND TOTAL** 11. VALUE OF SPACE TEST \$ ____ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY COST RISK \$

11 (1D3 2) 7-75

NO	51
DAGE	1

1.	REF. NO. PREP DATE REV DATE LTR						
۱ ''	CATEGORY						
2.	TITLE <u>Fabrication</u> , <u>Assembly and Joining of Materials for Large Space</u> Structures						
3.	TECHNOLOGY ADVANCEMENT REQUIRED LEVEL OF STATE OF ART						
J.	Develop processes for producing and CURRENT UNPERTURBED REQUIRED joining light-weight structural materials						
	(e.g. rods and sheets of metal forms) in space for large space structures.						
	This includes selection of materials, melting, controlled gas-bubble blowing						
and extrusion facilities, selection of joining methods and equipment and designs of an integrated system to provide materials of construction in-sit							
4.	SCHEDULE REQUIREMENTS FIRST PAYLOAD FLIGHT DATE						
	PAYLOAD DEVELOPMENT LEAD TIME3YEARS. TECHNOLOGY NEED DATE						
5.	BENEFIT OF ADVANCEMENT NUMBER OF PAYLOADS3						
	TECHNICAL BENEFITS The large space structure will be needed to provide for in						
	antenna for transmission of solar electric power to earth, a mirror for di- rection of concentrated solar radiation to earth-based power generators, either						
	voltaic or thermal, and for a space station for habitation of space construc-						
	tion and maintenance workers. Thus, a space structure is needed in the near						
future to support energy needs to earth. A space-base for other needs (e.g. manufacturing and research in low gravity) will be							
	needed later.						
	PUTENTIAL COST BENEFITS: The foamed metal in-space technology will allow ma-						
	terials of construction to be transported ESTIMATED COST SAVINGS \$20,000,000/structure easily in the Space Shuttle in compact form. Otherwise, many trips would be						
6.	RISK IN TECHNOLOGY ADVANCEMENT						
	RISK IN TECHNOLOGY ADVANCI MENT						
	Technical Problems						
	REQUIRED SUPPORTING TECHNOLOGIES Materials and processes research in foamed metal, design of a modular space assembly system, design of tooling to produce						
	the desired panels in space and planning and implementing a space experiment to prove the concept. An initial space experiment is needed to produce the						
7.	foamed metal in the low gravity and vacuum conditions of space. REFERENCE DOCUMENTS/COMMENTS						
l							

Space Structures PAGE COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: Simple Foamed metal experiment to prove process and obtain samples for testing on earth. TEST DESCRIPTION: ALT. (max/min) 240 / 180 km, INCL. any deg, TIME any hr BENEFIT OF SPACE TEST: Needed to obtain zero gravity EQUIPMENT: WEIGHT 150 kg, SIZE 1 X 0.5 X 0.2 m, POWER 10 kW POINTING None STABILITY DATA ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION _____ / SPECIAL GROUND FACILITIES: EXISTING: YES NO ______TEST CONFIDENCE __ 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS. SPECIAL GROUND FACILITIES: EXISTING: YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** 77 78 79 80 81 COST (\$) CY 76 TASK COST (\$) 1. ANALYSIS 300k 2. DESIGN 300k 3. MFG & C/O 600k 4. TEST & EVAL 600k TECH NEED DATE GRAND TOTAL 1800k **GRAND TOTAL** 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____ 12. DOMINANT RISK/TECH PROBLEM COST IMPACT PROBABILITY COST RISK \$ ET (TDR 2) 7-75

153

TITLE Fabrication, Assembly and Joining of Materials for Large

NO. 51

NO	52
PAGE	1

1.	REF. NO.	PREP DATE	8/11/75	REV DATE	LTR				
ļ		CATEGORY		<u></u>					
2.	TITLE Space Processing of Ceramics and Glass								
ί									
<u></u>	TECHNOLOGY ADVANCEMENT REQUIRED LEVEL OF STATE OF ART								
3.	· - · · · · · · · · · · · · · · · · · ·		CURRENT						
1	The objective of this								
ļ	develop experiments utilizing the space environment to gain information and understanding of some of the basic								
1	phenomena and behavior associated with the processing of ceramics and glass.								
	From the information gained, the development of new and improved ceramics and								
	glasses either by space or terrestrial processing, as applicable, would be								
	pursued.								
	·								
	·								
			-						
4.	SCHEDULE REQUIREMENTS FIRST PAYLOAD FLIGHT DATE								
	PAYLOAD DEVELOPMENT LEA	AD TIME	_YEARS. TECH	NOLOGY NEED DAT					
5.	BENEFIT OF ADVANCEME	MRER OF PAYLOADS	•						
	TECHNICAL BENEFITS New or improved ceramics with enhanced properties will								
	be developed for space								
	POTENTIAL COST BENEFITS								
				<u> </u>					
			ESTIMATED	COST SAVINGS \$					
	DICK IN TECHNOLOGY AS	V/ANOFNATALT							
6.									
	TECHNICAL PROBLEMS								
	REQUIRED SUPPORTING TECH	INOLOGICO (a) (ON Trout on C	hace Proceeding	for 1975				
	OAST Summer Workshop O		A Input on a	pace Fracessing	101 1973				
7.	REFERENCE DOCUMENTS	/COMMENTS							
-									
			· · · · · · · · · · · · · · · · · · ·						
					ويسونب ويرواليوني ويؤاففنوني واللاطات				
	NP 41 7/75								

PAGE 2 COMPARISON OF SPACE & GROUND TEST OPTIONS 8. SPACE TEST OPTION TEST ARTICLE: ALT. (max/min) _____/ km, INCL. deg, TIME ____ hr TEST DESCRIPTION: BENEFIT OF SPACE TEST: EQUIPMENT: WEIGHT _____ kg, SIZE ____ X ___ X ___ m, POWER ___ kW POINTING STABILITY DATA ORIENTATION _____ CREW: NO. ____ OPERATIONS/DURATION ____ / SPECIAL GROUND FACILITIES: _____ EXISTING: YES NO _______TEST CONFIDENCE _____ 9. GROUND TEST OPTION TEST ARTICLE: TEST DESCRIPTION/REQUIREMENTS: SPECIAL GROUND FACILITIES: EXISTING: YES NO GROUND TEST LIMITATIONS: TEST CONFIDENCE 10. SCHEDULE & COST SPACE TEST OPTION **GROUND TEST OPTION** CY 76 77 78 79 80 81 COST (S) 76 77 78 79 80 81 COST (S) TASK **1.050 .0\$0.05** 1. ANALYSIS 0.15 2. DESIGN 8.0 2.0 | 8.0 0.1 0.1 0.1 0.1 0.1 0.5 3. MFG & C/O 4. TEST & EVAL **TECH NEED DATE** 0.8 GRAND TOTAL **GRAND TOTAL** 0.65 11. VALUE OF SPACE TEST \$ _____ (SUM OF PROGRAM COSTS \$ _____ COST IMPACT PROBABILITY 12. DOMINANT RISK/TECH PROBLEM COST RISK \$

TITLE Space Processing of Ceramics and Glass

NO. 52